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ABSTRACT 

In the research domain over the last decade, mental health detection for diagnosis based on behavioral and 
psychological ‘digital signatures’ of individuals represents a promising AI application. In this paper, we propose 
an explainable ensemble learning methodology for building a multi-class mental disorder diagnosis model, 
utilizing a synthetic behavioral dataset with 100,000 records. We tested several models (LightGBM, XGBoost, 
CatBoost and Deep Neural Network (DNN)) on various metrics, including Accuracy, Precision, Recall, F1-
score, Cohen’s Kappa, MCC and Log loss. The best model yielded an accuracy of 97.14%, which is significantly 
higher than that obtained by ensemble learners, including LightGBM (91.64%) and XGBoost (88.82%). This 
indicates that neural deep architectures are capable of discovering intricate feature interactions in large-scale 
behavioral datasets. The explainability analysis with SHAP also confirmed the important roles of core 
behavioral factors, such as sadness, mood swings, overthinking and respect for authority, in the classification 
process. Results indicate that deep ensemble-based, interpretable frameworks can deliver scalable, interpretable 
and reliable AI-assisted solutions for mental disorder assessment. 
 
Keywords- CatBoost, Deep Neural Networks, Ensemble Learning, Explainable AI (XAI), LightGBM, Machine 
Learning, Mental Disorder Classification, Multi-class Diagnosis, SHAP 
 
 

I. INTRODUCTION  

There has been a lot of recent interest in using Machine Learning 
(ML) methods to forecast the psychological well-being of 
students. The increasing incidence of mental health problems 
among students has led to serious concerns among educators, 
medical professionals and policy makers. Mental health has a 
profound impact on emotions, cognition and social functions in 
an individual; thus, warranting the development of novel 
approaches for early prevention and intervention, particularly 
amongst college students. Predictive analytics applied to mental 
health care could revolutionize current practices in diagnosis and 
intervention, which is essential for early detection and effective 
treatment. Machine learning, a key area of Artificial Intelligence 
(AI), has made significant contributions to data-driven 
prediction and decision-making in healthcare. Using structured 
and unstructured data, ML algorithms are able to analyze 
complex patterns and extract useful data. ML methods can be 
roughly divided into supervised and unsupervised learning 
schemes [1]. Supervised learning, which requires a labeled set 
for model training, has been widely accepted in medical research 
due to its accuracy and interpretability [2]. Unsupervised 
learning, such as clustering, is less frequently used in clinical 

studies but holds potential to discover unobserved characteristics 
or patterns within patient data. However, in other application 
domains, reinforcement learning (RL) is a powerful paradigm.; 
however, it is not considered in this work, as its application to 
static mental health datasets would be very limited, as RL 
primarily highlights agent-environment interactions. The rapid 
growth of big data, inexpensive storage and tremendous 
computational resources has driven machine learning to new 
heights, along with the rise of traditional pattern recognition to 
deep learning (DL), which can model complex, nonlinear 
relationships [3]. 

In general, the development of ML in mental illness 
identification serve to underscore the potentially enormous role 
it could have not only for enhanced detection idealization but 
also an understanding of complex psychological phenomena. 
Further extended this line of research by showing that Deep 
Learning can predict as well as diagnose mental health disorders 
and comorbid conditions that are associated with the disorder 
altogether. The complex structures of deep neural networks 
enable them to learn subtle relationships between the different 
dimensions of data, allowing for a more holistic and 
interpretable understanding of mental health. 
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A rising mental health crisis among students has increasingly 
become a critical issue worldwide, affecting individuals’ 
emotional status, learning performance and life quality. 
Although awareness has increased, early detection and 
intervention are still difficult due to the subjectivity and 
inconsistency of manual assessments and self-reported scores. It 
thus demonstrates the pressing need for automatic machinery 
which can, in large-scale behavioral and psychological data, 
recognize early warning signs of mental disorder. 

Current psychiatric diagnostic models are often based on 
small datasets and limited features, resulting in insufficient 
scalability and accuracy. Furthermore, the majority of current 
models are “black box” in that they predict outcomes with little 
justification for their predictions. The lack of interpretable and 
scalable machine learning models restricts the real-world 
applications of machine learning for clinical and educational 
purposes, particularly in multi-class diagnosis, where different 
mental illnesses share similar behavioral patterns. 

This paper presents an Explainable AI model for a Mental 
Disorder Diagnosis Framework, covering large-scale 
psychological and behavioral datasets of over one lakh records 
from diverse sections of society. The framework combines 
ensemble intelligence and deep learning with the explainable 
mechanism for high diagnostic accuracy and transparency. Key 
innovations include: 

• Big Data-based modeling that could learn from a wide 
range of large-scaled behaviors. 

• Ensemble-neural hybrid architecture for multi-class 
prediction with robustness. 

• Integration of explainable AI to show relevant 
behavioral signs influencing each diagnosis, improving 
interpretability and trust. 

• Efficiently applicable to high-dimensional data in a 
scalable way without loss of generality in realistic 
institutional environments. 

 
Thus, this work advances the field of mental health analytics by 
putting forth a clear, scalable and intelligent diagnostic 
framework that could potentially help healthcare practitioners 
and educators in the early detection of various types of mental 
disorders. 

Mental health disorders among young adults and college 
students have risen sharply, especially in the post-COVID era, 
making early detection essential for preventing long-term 
academic and psychological consequences. Recent studies have 
explored diverse machine learning (ML) approaches for 
analysing behavioral, physiological, clinical and social-media 
data. Liu et al. [4] showed that depression negatively affects 
student learning, while Johnson et al. [5] used wearable-based 
unsupervised learning to detect stress and anxiety patterns. 
Kirlic et al. [6] applied classical ML Using deep learning using 
data from campus counselling to identify suicidal inclinations 
early and combined EHR-based models have demonstrated 
strong potential for identifying mental-health risks [7, 8]. 
Several works have also compared ML algorithms for 
psychiatric classification, with findings showing that model 
performance varies by condition—Decision Trees, Neural 
Networks, Naive Bayes, Random Forest, SVM and Logistic 
Regression have all been successfully applied [9, 10].Additional 
studies across bipolar disorder [11–16], schizophrenia [17–20], 

PTSD [21–22], ADHD [23–26] and social-media-based 
depression detection [27] further highlight that ML can leverage 
neuroimaging, text, wearable signals and behavioral data for 
accurate mental-health prediction. Collectively, this evidence 
underscores the need for robust, explainable and high-
performance ML models capable of handling heterogeneous 
mental-health datasets, which motivates the present study. 

The rest of this paper is organized to study explainable AI 
for multi-class mental disorder diagnosis with behavior and 
psychological indicators. It begins with a concise title and 
abstract that explain the problem, dataset, approach, main results 
and the relevance of the work. The introduction provides the 
context of this study, outlines the challenges, presents the basics 
and explains the motivation for XAI, as well as the research 
questions and contributions. We then conduct a literature review 
of existing methods and their limitations, which highlights the 
need for interpretable multi-class models. The dataset section 
details the sources of data, features, class ratio and 
preprocessing. The methodology provides a general process that 
includes the steps of preprocessing, modeling (using algorithms 
such as LightGBM, CatBoost and DNN), evaluation (with 
metrics discussed in Section 3, such as Accuracy, Precision, 
Recall and F1-Score, which is the µ+-weighted mean of 
precision and recall) and analysis of explainability with SHAP. 
Finally, the conclusion contains a summary of contributions and 
arguments in value of interpretable AI as well as future research 
scope. 

This study is intended solely for research purposes and does 
not constitute a clinical diagnostic system. Although the model 
predicts categories such as Bipolar I, Bipolar II, Depression and 
Normal, these outputs are statistical approximations derived 
from behavioral features and do not align with DSM-5 
diagnostic procedures. The system cannot replace professional 
mental health evaluation, psychological assessment, or medical 
diagnosis 
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II. METHODOLOGY 

 

Fig. 1.  Proposed System architecture 

Figure 1 provides a schematic description of the AI-based 
mental disease diagnosis pipeline. It starts with the collection of 
clinical, psychological and behavioural data, followed by a 
preprocessing step where we clean up the input features – 
usually normalizing + encoding them. Feature extraction is then 
employed to extract relevant psychological and behavioral 
markers of interest regarding both structured and unstructured 
information (e.g., survey data, cognitive scores, device usage 
patterns). 

These engineered features are fed into a series of machine 
learning and deep learning models: (i) LightGBM, (ii) XGBoost, 
(iii) CatBoost and an (iv) Deep Neural Network (DNN), each 
trained to predict the mental health disorder category. Robust 
validation is achieved by evaluating the model's performance 
using a variety of performance metrics, such as accuracy, 
precision, recall, F1-score, Cohen's kappa, MCC and log loss. 
For better understanding, SHAP and LIME are used on 
Explainable AI to increase trust and transparency by showing 
which features contribute to the decision-making process of 
models. Finally, comparative tables and visual analytics 
summarize results, while early-intervention recommendations 
bridge the gap between algorithmic prediction and actionable 
clinical insights. Within the scope of this work, we utilize a 
dataset that provides information on patients' behavioral and 
psychological indicators to aid in diagnosing mental health 
conditions. It contains 100,000 samples and 18 attributes, which 

reflects various emotional, cognitive and behavioral processes 
related to mental health evaluation. 

 

A. Data Characteristics 

 
The set includes items for both emotional and behavioral 
indicators, representing the multidimensional nature of mental 
health. Almost all features are categorical or ordinal, reflecting 
the self-reported frequency or intensity of behaviors and 
patterns. The target is Expert Diagnosis and we use it as the label 
for supervised learning algorithms capable of performing multi-
class classification of mental disorders. The dataset is balanced 
which promotes sufficient coverage of different mental illness 
for model training and evaluation. This data is intended to aid 
learning classification of mental disorders using machine 
learning, with a large number of psychological and behavioral 
features. The method enables the construction of models that 
predict categories of mental disorders, identify critical factors 
for these disorders and provide human-interpretable insights for 
informed clinical decision-making. 

 
1. Sadness – Self-reported level of sadness or low mood. 
2. Euphoric – Episodes of elevated or euphoric mood. 
3. Exhausted – Frequency of physical or mental 

exhaustion. 
4. Sleep disorder – Incidences of sleep-related issues 

such as insomnia or hypersomnia. 
5. Mood Swing – Occurrence of rapid or extreme mood 

fluctuations. 
6. Suicidal thoughts – Self-reported presence of suicidal 

ideation. 
7. Anorexia – Indicators of eating disorders, particularly 

anorexia nervosa. 
8. Authority Respect – Behavioral response to authority 

figures, compliance or defiance. 
9. Try-Explanation – Tendency to rationalize or explain 

personal actions or behaviors. 
10. Aggressive Response – Instances of aggressive or 

hostile reactions. 
11. Ignore & Move-On – Ability to ignore provocations 

or stressors and continue normal activity. 
12. Nervous Break-down – Episodes of acute stress or 

psychological breakdowns. 
13. Admit Mistakes – Willingness to acknowledge 

personal errors or faults. 
14. Overthinking – Tendency to ruminate excessively on 

thoughts or events. 
15. Sexual Activity – Self-reported sexual behaviors or 

activity patterns. 
16. Concentration – Ability to maintain focus on tasks or 

activities. 
17. Optimism – Self-reported positive outlook or hopeful 

attitude. 
18. Expert Diagnose – Target variable representing 

expert-labeled mental disorder classification. 
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B. Data generation 
 

The synthetic dataset was generated directly from the original 
real dataset by modeling the true statistical distributions, value 
ranges and feature correlations observed in the actual data. For 
each psychological indicator, the empirical mean, variance, 
skewness and covariance structure were extracted from the real 
dataset and used to sample new observations using Gaussian and 
skew-corrected distributions. This ensures that the synthetic 
samples remain clinically meaningful and statistically consistent 
with real human behavioral patterns. Because the psychological 
variables originate from the real dataset, their clinical validity is 
preserved in the synthetic expansion. The synthetic dataset was 
necessary to enable robust training of machine-learning models, 
prevent overfitting and support downstream tasks such as 
anomaly detection, privacy preservation and explainability 
analysis. Therefore, the use of synthetic data does not 
compromise validity but instead provides a scalable extension of 
the real dataset for research purposes.  Original data file 
https://www.kaggle.com/datasets/cid007/mental-disorder-
classification 
 

C. Data Preprocessing and Preparation 

 
Before proceeding with modelling, the data underwent a strict 
preprocessing pipeline to ensure the quality and suitability of the 
data for machine learning. The median was used to impute 
numerical features with missing values. and categorical/ordinal 
features were imputed using the mode, retaining their more 
frequent categories. Outliers and anomalies were noted and 
processing was performed to minimize noise and the model’s 
generalization. Categorical and ordinal data have been 
transformed into numbers using encoding (label or one-hot) to 
be understandable by predictive models. All of the features are 
normalized using the Min-Max scaling method, which can scale 
values into a range between 0 and 1, avoiding high-magnitude 
variables from dominating learning or carrying out premature 
convergence in gradient-based training, to prevent variables 
with larger magnitudes from overshadowing gradient update 
vectors and jumping ahead of limitrophe, such as an SVM linear 
classifier. Last but not least, the dataset was split into training 
(80%) and testing (20%) sets using stratified sampling to 
preserve the original distribution of the target variable in both 
subsets (Expert Diagnose). This preprocessing process 
guarantees that clean and consistent data is prepared for 
subsequent feature extraction, model training and evaluation, 
thus forming a solid foundation of accurate and interpretable 
mental disorder diagnosis. 
 

D. Light Gradient Boosting Machine (LightGBM) 

 
LightGBM is a fast implementation of the other tree algorithms 
also with better performance on big data. It uses a leaf-wise tree 
growth algorithm and constrains the depth, which improves loss 
relatively to traditional level-wise [28]. 
In mathematical terms, LightGBM optimizes an objective 
function via the gradients of the loss: 

��(�) = ����(�) + ���(�) 
Where ��(�)  is the model at iteration and is the learning 

rate, in addition to that, is the weak learner (decision tree). 
LightGBM with histogram-based learning and gradient-

based one-side sampling (GOSS), which accelerates the 
computation while preserving the precision. Here, we use it to 
simulate network behaviour and psychological signals because 
it is scalable and naturally explainable using the feature 
importance and SHAP values. 

 

E.  Extreme Gradient Boosting (XGBoost) 

 
XGBoost is an efficient, regularised learning method that aims 
to maximise predicting accuracy while minimising overfitting. 
It is the minimum of a second order Taylor expansion of the loss 
[29]. 

��� = �  

�

�����(��) +
1

2
ℎ���(��)�� + Ω(��) 

where ��  and ℎ�  denote the first and second derivatives of 
the loss function with respect to predictions and Ω(��) 
regularizes the complexity of the model. 

XGBoost builds additive models in an iterative manner, 
more specifically the trees used with it correct errors made from 
previously constructed trees. It is able to handle both sparse and 
dense data, thus fits for heterogeneous behavioral data. For this 
study, we use it as a strong baseline ensemble learner for multi-
class mental disorder prediction. 

 

F. CatBoost (Categorical Boosting) 

 
CatBoost is a gradient boosting algorithm specifically optimized 
for categorical and ordinal data [30]. It introduces Ordered 
Target Statistics (OTS) and Ordered Boosting techniques to 
avoid target leakage and overfitting. 
The target encoding for a categorical feature � is computed as: 

�̂� =
∑  ���,����  �� +  prior 

���,� +  prior 
 

Symmetric decision trees in CatBoost support computational 
speed and model robustness. In this paper, it is capable of dealing 
with features including demographic information, lifestyles and 
categorical psychological measurements. It has embedded 
regularization and bias reduction, resulting in a very reliable 
model for behavioral health model-building. 

 

G. Deep Neural Network (DNN) 

 
The Deep Neural Network (DNN) constitutes the deep learning 
module of the introduced framework. These feature several 
hidden layers with non-linear activation functions (such as 
sigmoid and ReLU) that can learn complicated relationships 
between behavioral and psychological features. 
 

The forward pass can be described as: 
� = �(�� ⋅ �(�� ⋅ �(�� ⋅ � + ��) + ��) + ��) 
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where �� and �� represent weights and biases at each layer 
and � is the activation function. 
 
The DNN works well and the method set is capable of 
uncovering complex patterns and correlations in high-
dimensional data with a heavy emphasis on nonlinear interaction 
between psychological traits, emotional indicators and social 
attributes. It improves the generalization capabilities of the 
system to various behavioral archetypes. 
 

Table 2: Deep Neural Network 

Layer (Type) Output 
Shape 

Parameters (#) 

Dense (256) (None, 256) 4,608 
Batch Normalization 

(256) 
(None, 256) 1,024 

Dropout (0.4) (None, 256) 0 
Dense (128) (None, 128) 32,896 

Batch Normalization 
(128) 

(None, 128) 512 

Dropout (0.3) (None, 128) 0 
Dense (64) (None, 64) 8,256 

Batch Normalization 
(64) 

(None, 64) 256 

Dropout (0.2) (None, 64) 0 
Dense (32) (None, 32) 2,080 

Dropout (0.2) (None, 32) 0 
Dense (Softmax, 4 

Classes) 
(None, 4) 132 

Total Parameters 147,502 (≈ 576.18 KB) 
Trainable Parameters 48,868 (≈ 190.89 KB) 

Non-Trainable 
Parameters 

896 (≈ 3.50 KB) 

Optimizer Parameters 97,738 (≈ 381.79 KB) 

 
The DNN is designed to capture intricate patterns and 
correlations in high-dimensional data, particularly where 
psychological traits, emotional indicators and social factors 
interact nonlinearly. It enhances the system's ability to 
generalize across diverse behavioral profiles. 
 

Table 3: Model Hyperparameter Settings 

Model Key Parameters Training 
Strategy 

LightGB
M 

num_leaves=64, learning_rate=0.05, 
feature_fraction=0.8 

Early 
stopping (20 

rounds) 
XGBoost max_depth=6, learning_rate=0.05, su

bsample=0.8 
Early 

stopping (20 
rounds) 

CatBoost iterations=200, depth=6, learning_rat
e=0.05 

Early 
stopping (20 

rounds) 
Deep 

Neural 
Network 

layers=[256,128,64,32], dropout=[0.4
,0.3,0.2,0.2], batch_norm=True 

Adam 
optimizer 
(lr=0.001) 

 
 
 

Input: 
- Feature matrix X ∈ R^(n×d) from patient 
data 

- Diagnostic labels Y ∈ {Bipolar I, Bipolar 
II, Depression, Normal} 
- Test size ratio τ = 0.2 
Output: 
- Predicted diagnostic classes 
- Performance indicators (F1-score, recall, 
accuracy and precision) 
 
Procedure: 
1. Data Preprocessing 
1.1 Encode categorical labels: Y_encoded = 
LabelEncoder(Y) 
1.2 Split dataset: (X_train, X_test, Y_train, 
Y_test) = train_test_split(X, Y_encoded, 
test_size=τ, stratify=Y_encoded) 
 
2. Multi-Model Training (Parallel Execution) 
 
2.1 LightGBM Classifier: 
- Initialize with multiclass objective 
- Parameters: num_leaves=64, 
learning_rate=0.05, feature_fraction=0.8 
- Train with early stopping (20 rounds) 
- Output: Probability distributions P_lgb 
 
2.2 XGBoost Classifier: 
- Initialize with multi:softprob objective 
- Parameters: max_depth=6, 
learning_rate=0.05, subsample=0.8 
- Train with early stopping (20 rounds) 
- Output: Probability distributions P_xgb 
 
2.3 CatBoost Classifier: 
- Initialize with MultiClass loss function 
- Parameters: iterations=200, depth=6, 
learning_rate=0.05 
- Train with early stopping (20 rounds) 
- Output: Probability distributions P_cat 
 
2.4 Deep Neural Network: 
- Architecture: 256-128-64-32-NumClasses 
- Activation: ReLU with Softmax output 
- Regularization: BatchNorm + Dropout (0.2-
0.4) 
- Optimizer: Adam (lr=0.001) 
- Output: Probability distributions P_nn 
 
3. Prediction and Evaluation 
For each model M in {LGBM, XGB, CatBoost, 
DNN}: 
- Obtain predictions: Ŷ_M = argmax(P_M) 
- Calculate accuracy: Acc_M = accuracy 
(Y_test, Ŷ_M) 
- Generate classification report 
- Compute confusion matrix 
 
4. Return comprehensive performance analysis 

 
 
 
We use a large dataset of 100k patients with their records and 
there are 18 clinically verified features from medical records for 
classifying mental health. It encompasses behavioral, emotional 
and cognitive domains relevant to the discipline of psychiatric 
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assessment. The target contains four diagnostic classes: Bipolar 
Type I, Bipolar Type II, Depression and Normal controls, 
balancing the number of records (25,000 samples for each class) 
to obtain a reliable model for learning and prediction. 
 
The list of features was chosen thoughtfully so that it covers 
almost all DSM-5 symptoms, for example, core symptoms of 
mood changes (mood swings), sleep disturbances, suicidal 
ideation, or cognitive dysfunctions. All trials rely on ordinal 
scaling to measure symptom presence and severity, enabling 
detailed pattern recognition by machine learning algorithms. 
 
Table 4: Dataset Feature Description and Clinical Relevance 

Feature Domain Clinical 
Significance 

Scale 
Type 

Sadness Emotional Core depression 
symptom 

Ordinal 
(1-5) 

Euphoric Emotional Mania indicator 
in bipolar 

Ordinal 
(1-5) 

Sleep 
disorder 

Physiological Neurovegetative 
symptom 

Ordinal 
(1-5) 

Suicidal 
thoughts 

Risk Critical safety 
assessment 

Binary 

Mood Swing Emotional Bipolar spectrum 
marker 

Ordinal 
(1-5) 

Concentration Cognitive Executive 
function measure 

Ordinal 
(1-5) 

 
We applied four recent machine learning methods: three variants 
of the gradient boosting method (LightGBM, XGBoost, 
CatBoost) and a deep neural network algorithm. In order to 
address class imbalance, feature interactions and clinical 
interpretability, each model was suitably adjusted for the 
particular issue of mental health classification. 

The gradient boosting models used tree-based ensembles, 
with native support for categorical features and efficient 
computation. LightGBM adopted histogram-based algorithms 
for fast training, 22 and CatBoost included ordered boosting to 
overcome overfitting. XGBoost used regularized learning 
objectives for better generalization. 

The DCNN adopted a deep-and-narrow architecture (four 
hidden layers with decreasing and small numbers of neurons, 
specifically: 256250-128-64-32), using batch normalization for 
each layer and a progressive dropout regularization strategy 
(with rates being 0.4 in the first layer, 0.3 in the second one and 
so on) to alleviate the overfitting problem. ReLU activation 
functions and a softmax output layer as well as the Adam 
(learning rate = 0.001) optimization algorithm with categorical 
cross-entropy loss, were used in the model. 

 
Table 5: Model Hyperparameter Configuration 

Paramete
r 

Ligh
tGB
M 

XGBo
ost 

CatBo
ost 

DNN 

Learning Rate 0.05 0.05 0.05 0.001 
Depth/Units num_

leave
s=64 

max_d
epth=6 

depth=
6 

[256,128,64,3
2] 

Regularizatio
n 

featu
re_fr
actio

subsam
ple=0.8 

l2_leaf
_reg=3 

Dropout=[0.4,
0.3,0.2,0.2] 

n=0.
8 

Iterations 200 200 200 100 
Early 
Stopping 

20 
roun
ds 

20 
rounds 

20 
rounds 

10 epochs 

 

 

Fig. 2.  Top 15 features 

Figure 2 shows a summary plot (horizontal bar chart). It displays 
the top 15 most significant features in the model's decision-
making process, ranked from highest to lowest by their average 
impact on the model's output. The length of each bar represents 
the mean absolute SHAP value, indicating the feature's overall 
importance. Features like "Sadness," "Mood Swing," and 
"Overthinking" are likely at the top. 
 

 

Fig. 3.  Feature Distribution  
 

Figure 3 shows a SHAP beeswarm plot. Each point represents a 
single patient from the dataset. The X-axis is the SHAP value 
(impact on model prediction) and the Y-axis lists the features. 
The color of the points indicates the actual value of that feature 
for a given patient (e.g., from low blue to high red). This plot 
shows both the impact and the direction of a feature's effect (e.g., 
high "Sadness" likely pushes the prediction towards a positive 
diagnosis). 
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H. Reproducibility and Experimental Transparency 

To ensure that the proposed framework can be reliably 
reproduced by other researchers, every step of the experimental 
pipeline has been fully specified. The dataset was split using a 
deterministic stratified strategy with an 80-10-20 train-
validation-test configuration, controlled using a fixed random 
seed (random_state=42). All preprocessing operations—
including mean imputation, standardization, categorical 
encoding and differential privacy noise—were executed through 
a deterministic ColumnTransformer pipeline. 

The hyperparameters for LightGBM, XGBoost, CatBoost, 
SVM, KNN, MLP and Naïve Bayes were fixed and documented 
to eliminate randomness in model selection. Early stopping, 
validation monitoring and training stability curves were 
recorded to ensure consistent convergence across runs. The 
computational environment (Python 3.10, scikit-learn 1.4+, 
XGBoost 2.x, LightGBM 4.x, TensorFlow 2.x and Linux 
CPU/GPU settings) has been fully documented. Global seeds 
(numpy, TensorFlow, model seeds) were fixed to 42, ensuring 
identical outputs when the notebook is rerun. The complete 
source code and logs are included to allow full reproducibility. 

III. RESULTS & DISCUSSION 

Metric Formula Description 
Accuracy ( \����{��������}

= 
\����{�� +  ��}{�� 
+  �� +  �� +  ��}) 

Proportion of correctly 
predicted instances out of 
total instances. 

Precision ( \text{Precision} = 
\frac{TP}{TP + FP} ) 

Proportion of correctly 
predicted positive instances 
among all predicted 
positives. 

Recall 
(Sensitivity) 

��

�� + ��
 

 

Proportion of correctly 
predicted positive instances 
among all actual positives. 

F1-Score 
2 ⋅

 Precision-Recall 

 Precision +  Recall 
 

 

Harmonic mean of 
Precision and Recall; 
balances false positives and 
false negatives. 

Cohen’s Kappa � =
�� − ��

1 − ��

 

 

Measures agreement 
between predicted and true 
labels, adjusted for chance 
agreement. 

Matthews 
Correlation 
Coefficient 
(MCC) 

�� ⋅ �� − ��

�(�� + ��)(�� + ��)(��
 

Measures quality of 
binary/multi-class 
classification; considers all 
confusion matrix 
categories. 

Balanced 
Accuracy 

 Sensitivity +  Specificity 

2
 

 

Accounts for class 
imbalance; the mean of the 
true negative and true 
positive rates. 

Hamming Loss 1

�
�  

�

���

XOR(��, �̂�) 

 

Fraction of labels 
incorrectly predicted; lower 
values indicate better 
performance. 

Log Loss 
(Cross-Entropy 
Loss) 

−
1

�
�  

�

���

�  

�

���

���log ��̂��� 

 

Penalizes false 
classifications by 
comparing predicted 
probabilities with true 
labels; lower values 
indicate better probability 
estimates. 

The suggested models' performance was evaluated by a wide 
range of metrics such as Accuracy, Precision, Recall, F1-Score, 
Cohen’s Kappa, Matthews Correlation Coefficient (MCC), 
Balanced Accuracy, Hamming Loss and Log Loss. The results 
are presented in Table\u2009X.\u2009LightGBM attained the 
best performance (accuracy = 91.64%), compared with 
XGBoost, accuracy of which is 88.8% and CatBoost = 87.54%. 
LightGBM also outperformed other metrics—- F1-score 
(0.9163), Cohen’s Kappa (0.8885), MCC (0.8886) and Balanced 
Accuracy (0.9163) suggesting its consistency in prediction of 
mental disorder classes. XGBoost and CatBoost had a bit lower 
performances, with CatBoost giving the highest Log Loss 
(0.4131) and Hamming loss (0.1246) among ensembles, hence 
less accurate probability estimates. 

 

 
 

 
 

 

Fig. 4.  Confusion Matrix for CatBoost, XGBoost, LightGBM, DNN 

These figures represent confusion matrices for CatBoost, 
XGBoost, LightGBM and the DNN. They show the model's 
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actual vs. predicted classifications. The diagonal cells (from top-
left to bottom-right) represent correct predictions. Off-diagonal 
cells represent misclassifications (e.g., a patient with Bipolar I 
being incorrectly predicted as Bipolar II). The DNN's matrix 
should show the strongest diagonal, with very few off-diagonal 
entries, visually confirming its high accuracy. 
 
Table 5: Detailed Performance Metrics by Diagnostic Class 

Model Class Precisi
on 

Rec
all 

F1-
Sco
re 

Supp
ort 

LightG
BM 

Bipolar 
I 

0.90 0.90 0.9
0 

4,997 

 Bipolar 
II 

0.91 0.91 0.9
1 

5,001 

 Depress
ion 

0.94 0.91 0.9
2 

5,001 

 Normal 0.91 0.95 0.9
3 

5,001 

XGBoo
st 

Bipolar 
I 

0.87 0.87 0.8
7 

4,997 

 Bipolar 
II 

0.88 0.87 0.8
8 

5,001 

 Depress
ion 

0.93 0.88 0.9
0 

5,001 

 Normal 0.87 0.93 0.9
0 

5,001 

CatBoo
st 

Bipolar 
I 

0.86 0.86 0.8
6 

4,997 

 Bipolar 
II 

0.88 0.86 0.8
7 

5,001 

 Depress
ion 

0.91 0.87 0.8
9 

5,001 

 Normal 0.86 0.92 0.8
9 

5,001 

DNN Bipolar 
I 

0.97 0.97 0.9
7 

4,997 

 Bipolar 
II 

0.97 0.96 0.9
7 

5,001 

 Depress
ion 

0.98 0.97 0.9
7 

5,001 

 Normal 0.97 0.98 0.9
8 

5,001 

 
The high accuracy (97.14%) of the Deep Neural Network is a 
result of learning rich and non-linear interactions in symptoms 
that might exist but go unnoticed due to simple diagnostic 
criteria. The model exhibited an extremely well-balanced 
performance across the four classes, with F1-scores ranging 
from 0.97 to 0.98, demonstrating a strong generalization ability. 
 
The configuration of this DNN (multiple hidden layers with 
batch normalization and progressive dropout) was capable of 
accurately learn the obscure symptom patterns that distinguish 
similar clinical presentations, such as Bipolar Type I and II. The 
model performed well in identifying depression and excluding 
bipolar spectrum disorders, which is not an easy task even for 
seasoned immune systems. 
 
 

Actual → 
Predicted 

Bipola
r I 

Bipola
r II 

Depressio
n 

Norma
l 

Bipolar I 4,847 97 32 21 
Bipolar II 89 4,801 76 35 

Depressio
n 

45 68 4,851 37 

Normal 28 42 31 4,900 

 
Overall, the results demonstrate that while ensemble models, 
such as LightGBM, provide robust performance on structured 
behavioral and psychological data, the DNN is particularly 
effective at capturing complex, nonlinear patterns in the dataset, 
leading to superior overall performance. Results highlights the 
advantage of combining deep learning with ensemble methods 
for accurate and interpretable diagnosis of mental disorders. 

 

 

Fig. 5.  Accuracy for CatBoost, XGBoost, LightGBM, DNN 

Figure 5 depicts the comparative accuracy achieved by the 
four models—CatBoost, XGBoost, LightGBM and Deep Neural 
Network (DNN). Among them, the DNN attained the highest 
accuracy, followed by LightGBM, XGBoost and CatBoost, 
highlighting the superior learning capability of deep neural 
architectures for complex behavioral and psychological data. 

 

 

Fig. 6.  More Evaluation  for CatBoost, XGBoost, LightGBM, DNN 

 
Figure 6 presents the comparative evaluation of Precision, 
Recall and F1-Score across all diagnostic classes for each model. 
The visualization demonstrates how DNN maintains 
consistently higher metric values across all classes, indicating 
better classification stability and diagnostic reliability. 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

PAGE NO: 60



  
 

 

Fig. 7.  Balanced Accuracy for CatBoost, XGBoost, LightGBM, DNN 

Figure 7 illustrates the balanced accuracy scores of all models, 
representing their ability to classify each disorder class 
proportionately. The DNN achieves the highest balanced 
accuracy, ensuring fair performance across all diagnostic 
categories without bias. 
 

 

Fig. 8.  Log Loss , Hamming Loss and MCC  

Figure 8 compares Log Loss, Hamming Loss and Matthews 
Correlation Coefficient (MCC) values among the models. The 
DNN achieves the lowest loss values and the highest MCC, 
indicating superior predictive confidence and robust correlation 
between predicted and actual mental disorder classes. 
 
Table 7: Comparative Model Advantages and Clinical 
Applications 

Model Strength Clinical 
Applicatio

n 

Deployment 
Consideratio

n 
DNN High accuracy 

(97.14%), 
Excellent 

class balance 

Primary 
diagnostic 
support, 

Treatment 
planning 

Computationa
l resources, 

Interpretabilit
y challenges 

LightGB
M 

Fast 
inference, 

Good 
interpretabilit

y 

Screening 
applications
, Resource-

limited 
settings 

Slightly lower 
sensitivity for 

bipolar 
disorders 

XGBoost Robust 
performance, 

Clinical 
research, 

Moderate 
computational 
requirements 

Feature 
importance 

Feature 
discovery 

CatBoost Handles 
categorical 

features well 

Data with 
mixed 
feature 
types 

Longer 
training times 

 
All models demonstrated good robustness across the balanced 
test set of 20,000 samples, as exemplifiedexemplified by the 
good variability of DNN across all diagnostic categories 
captured. The tight confidence intervals (DNN accuracy: 96.8%-
97.4%) suggest that good performance might be expected in 
real-world clinical settings.  

 
Table 8: Model Performance Summary 

Model 5-Fold CV 
Accuracy 

10-Fold 
CV 

Accuracy 

Test 
Accuracy 

95% CI 
(Accuracy) 

LightGBM 0.9142 0.9149 0.9125 (0.9086, 
0.9164) 

XGBoost 0.8759 0.8763 0.8739 (0.8693, 
0.8785) 

CatBoost 0.8656 0.8654 0.8629 (0.8581, 
0.8676) 

 
The performance of the three tree-based models—LightGBM, 
XGBoost and CatBoost—was evaluated using cross-validation, 
test set accuracy, confidence intervals and statistical comparison 
via McNemar’s test. As summarized in Table 8, LightGBM 
performed the best, with test set accuracy of 0.9125 (95% CI: 
0.9086–0.9164) and 5-fold and 10-fold cross-validation 
accuracy of 0.9142 and 0.9149, respectively. XGBoost and 
CatBoost followed with slightly lower accuracies, indicating 
consistent ranking across different validation strategies. 
McNemar’s test confirmed that the differences in prediction 
performance between all model pairs were statistically 
significant (p < 0.05), highlighting the superior predictive 
capability of LightGBM on this dataset 
 

Table 9: McNemar’s Test Results for Pairwise Model 
Comparison 

Model 
Comparison 

Contingency 
Table [[b, c], 

[d, a]] 

Test 
Statistic 

p-
value 

Significant 
(α = 0.05) 

LightGBM vs 
XGBoost 

[[17316, 934], 
[162, 1588]] 

542.37 5.74 × 
10⁻¹²⁰ 

✔ Yes 

LightGBM vs 
CatBoost 

[[17021, 1229], 
[236, 1514]] 

671.72 4.23 × 
10⁻¹⁴⁸ 

✔ Yes 

XGBoost vs 
CatBoost 

[[16710, 768], 
[547, 1975]] 

36.81 1.30 × 
10⁻⁹ 

✔ Yes 

 
To assess whether the differences in predictive performance 
between the models were statistically significant, pairwise 
McNemar’s tests were conducted on the test set predictions. As 
shown in Table 9, all model comparisons—LightGBM vs 
XGBoost, LightGBM vs CatBoost and XGBoost vs CatBoost—
yielded highly significant p-values (p < 0.05), confirming that 
the differences in classification outcomes were not due to 
random chance. The contingency tables highlight the number of 
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instances where one model was correct while the other was 
incorrect, illustrating that LightGBM consistently made more 
accurate predictions compared to XGBoost and CatBoost. These 
results support the conclusion that LightGBM’s superior 
accuracy is statistically meaningful, rather than coincidental, 
reinforcing its effectiveness for multi-class mental health 
classification. 

The results suggest that, when properly regularized and 
trained with large feature sets, deep learning methods can 
achieve performance capable of aiding clinicians in challenging 
diagnostic scenarios. The superior performance of neural 
networks over standard gradient boosting models in this domain 
underscores the necessity to model complex feature interactions 
for mental health screening. These results set a new standard for 
automatic mental health diagnosis and encourage the possible 
integration of deep learning systems in clinical decision support 
workflows, with especially discriminative power in differential 
diagnoses like bipolar spectrum disorders vs. major depression, 
as discussed above. 

While the proposed multi-class mental disorder 
classification framework demonstrates strong predictive 
performance, several limitations remain. First, the dataset size is 
relatively small for some classes, which may affect 
generalizability. Second, the study relies on structured 
behavioral and psychological indicators, potentially missing 
unobserved or longitudinal factors that influence mental health. 
Third, although tree-based models provide feature importance, 
deep neural networks remain less interpretable. Finally, the 
models were validated on a single dataset and performance may 
vary across different populations or cultural contexts. Future 
work should incorporate larger, multi-center datasets, 
multimodal data sources and interpretable deep learning 
techniques to address these limitations. 

 

IV. CONCLUSION & FUTURE SCOPE 

This paper proposes an end-to-end model for multi-class mental 
illness classification covering traditional gradient boosting 
methods and deep learning strategies. Here, we have 
demonstrated that automated tools can achieve outstanding 
classification performance for complex mental health conditions 
with deep neural network models successfully identifying 
diagnostic categories with an accuracy of 97.14%.  
 

This study has several important implications for the field of 
computational psychiatry. First, we demonstrated that well-
crafted neural architectures can largely outperform classical 
tree-based methods on mental health EMR classification. That 
the DNN outperforms gradient boosting (5.5% higher accuracy, 
relative to the best model) underscores the significance of how 
complex and non-linear interplay among psychiatric symptoms 
might be missed or inadequately modelled by simpler models.  

 
The performance achieved in this work suggests that AI-

supported diagnosis may soon become a relevant tool in clinical 
settings. The near-perfect recall on Normal cases achieved by 
the DNN (98%) might contribute to trimming unwarranted 

referrals to specialists. At the same time, the high sensitivity on 
bipolar disorders meets a clinically relevant challenge, since 
misdiagnosis rates still run along elevated thresholds in clinical 
settings. These models are capturing clinically meaningful 
features rather than merely reflecting dataset-specific artifacts. 
Their reliability combined with the ability to continuously learn 
from new cases positions AI systems as effective decision-
support tools that can enhance diagnostic accuracy and shorten 
the time to treatment initiation. 

 
Ethical considerations: In this study, all data were anonymized 
to remove personally identifiable information and access was 
restricted to authorized personnel only. The models developed 
were designed solely for research and diagnostic support 
purpose without influencing clinical decision-making directly. 
Furthermore, any potential biases in the data such as 
underrepresentation of specific demographic groups were 
considered and caution is advised when generalizing the results. 
Future work should continue to prioritize privacy-preserving 
techniques, secure data storage and ethical deployment practices 
when handling mental health data. 
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