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ABSTRACT

In the research domain over the last decade, mental health detection for diagnosis based on behavioral and
Ppsychological ‘digital signatures’ of individuals represents a promising Al application. In this paper, we propose
an explainable ensemble learning methodology for building a multi-class mental disorder diagnosis model,
utilizing a synthetic behavioral dataset with 100,000 records. We tested several models (LightGBM, XGBoost,
CatBoost and Deep Neural Network (DNN)) on various metrics, including Accuracy, Precision, Recall, F1-
score, Cohen’s Kappa, MCC and Log loss. The best model yielded an accuracy of 97.14%, which is significantly
higher than that obtained by ensemble learners, including LightGBM (91.64%) and XGBoost (88.82%). This
indicates that neural deep architectures are capable of discovering intricate feature interactions in large-scale
behavioral datasets. The explainability analysis with SHAP also confirmed the important roles of core
behavioral factors, such as sadness, mood swings, overthinking and respect for authority, in the classification
process. Results indicate that deep ensemble-based, interpretable frameworks can deliver scalable, interpretable
and reliable Al-assisted solutions for mental disorder assessment.

Keywords- CatBoost, Deep Neural Networks, Ensemble Learning, Explainable AI (XAI), LightGBM, Machine

Learning, Mental Disorder Classification, Multi-class Diagnosis, SHAP

I.  INTRODUCTION

There has been a lot of recent interest in using Machine Learning
(ML) methods to forecast the psychological well-being of
students. The increasing incidence of mental health problems
among students has led to serious concerns among educators,
medical professionals and policy makers. Mental health has a
profound impact on emotions, cognition and social functions in
an individual; thus, warranting the development of novel
approaches for early prevention and intervention, particularly
amongst college students. Predictive analytics applied to mental
health care could revolutionize current practices in diagnosis and
intervention, which is essential for early detection and effective
treatment. Machine learning, a key area of Artificial Intelligence
(AI), has made significant contributions to data-driven
prediction and decision-making in healthcare. Using structured
and unstructured data, ML algorithms are able to analyze
complex patterns and extract useful data. ML methods can be
roughly divided into supervised and unsupervised learning
schemes [1]. Supervised learning, which requires a labeled set
for model training, has been widely accepted in medical research
due to its accuracy and interpretability [2]. Unsupervised
learning, such as clustering, is less frequently used in clinical

studies but holds potential to discover unobserved characteristics
or patterns within patient data. However, in other application
domains, reinforcement learning (RL) is a powerful paradigm.;
however, it is not considered in this work, as its application to
static mental health datasets would be very limited, as RL
primarily highlights agent-environment interactions. The rapid
growth of big data, inexpensive storage and tremendous
computational resources has driven machine learning to new
heights, along with the rise of traditional pattern recognition to
deep learning (DL), which can model complex, nonlinear
relationships [3].

In general, the development of ML in mental illness
identification serve to underscore the potentially enormous role
it could have not only for enhanced detection idealization but
also an understanding of complex psychological phenomena.
Further extended this line of research by showing that Deep
Learning can predict as well as diagnose mental health disorders
and comorbid conditions that are associated with the disorder
altogether. The complex structures of deep neural networks
enable them to learn subtle relationships between the different
dimensions of data, allowing for a more holistic and
interpretable understanding of mental health.
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A rising mental health crisis among students has increasingly
become a critical issue worldwide, affecting individuals’
emotional status, learning performance and life quality.
Although awareness has increased, early detection and
intervention are still difficult due to the subjectivity and
inconsistency of manual assessments and self-reported scores. It
thus demonstrates the pressing need for automatic machinery
which can, in large-scale behavioral and psychological data,
recognize early warning signs of mental disorder.

Current psychiatric diagnostic models are often based on
small datasets and limited features, resulting in insufficient
scalability and accuracy. Furthermore, the majority of current
models are “black box™ in that they predict outcomes with little
justification for their predictions. The lack of interpretable and
scalable machine learning models restricts the real-world
applications of machine learning for clinical and educational
purposes, particularly in multi-class diagnosis, where different
mental illnesses share similar behavioral patterns.

This paper presents an Explainable Al model for a Mental
Disorder Diagnosis Framework, covering large-scale
psychological and behavioral datasets of over one lakh records
from diverse sections of society. The framework combines
ensemble intelligence and deep learning with the explainable
mechanism for high diagnostic accuracy and transparency. Key
innovations include:

+  Big Data-based modeling that could learn from a wide

range of large-scaled behaviors.

. Ensemble-neural hybrid architecture for multi-class
prediction with robustness.

. Integration of explainable AI to show relevant
behavioral signs influencing each diagnosis, improving
interpretability and trust.

. Efficiently applicable to high-dimensional data in a
scalable way without loss of generality in realistic
institutional environments.

Thus, this work advances the field of mental health analytics by
putting forth a clear, scalable and intelligent diagnostic
framework that could potentially help healthcare practitioners
and educators in the early detection of various types of mental
disorders.

Mental health disorders among young adults and college
students have risen sharply, especially in the post-COVID era,
making early detection essential for preventing long-term
academic and psychological consequences. Recent studies have
explored diverse machine learning (ML) approaches for
analysing behavioral, physiological, clinical and social-media
data. Liu et al. [4] showed that depression negatively affects
student learning, while Johnson et al. [5] used wearable-based
unsupervised learning to detect stress and anxiety patterns.
Kirlic et al. [6] applied classical ML Using deep learning using
data from campus counselling to identify suicidal inclinations
early and combined EHR-based models have demonstrated
strong potential for identifying mental-health risks [7, 8].
Several works have also compared ML algorithms for
psychiatric classification, with findings showing that model
performance varies by condition—Decision Trees, Neural
Networks, Naive Bayes, Random Forest, SVM and Logistic
Regression have all been successfully applied [9, 10].Additional
studies across bipolar disorder [11-16], schizophrenia [17-20],

PTSD [21-22], ADHD [23-26] and social-media-based
depression detection [27] further highlight that ML can leverage
neuroimaging, text, wearable signals and behavioral data for
accurate mental-health prediction. Collectively, this evidence
underscores the need for robust, explainable and high-
performance ML models capable of handling heterogeneous
mental-health datasets, which motivates the present study.

The rest of this paper is organized to study explainable Al
for multi-class mental disorder diagnosis with behavior and
psychological indicators. It begins with a concise title and
abstract that explain the problem, dataset, approach, main results
and the relevance of the work. The introduction provides the
context of this study, outlines the challenges, presents the basics
and explains the motivation for XAI, as well as the research
questions and contributions. We then conduct a literature review
of existing methods and their limitations, which highlights the
need for interpretable multi-class models. The dataset section
details the sources of data, features, class ratio and
preprocessing. The methodology provides a general process that
includes the steps of preprocessing, modeling (using algorithms
such as LightGBM, CatBoost and DNN), evaluation (with
metrics discussed in Section 3, such as Accuracy, Precision,
Recall and F1-Score, which is the pt-weighted mean of
precision and recall) and analysis of explainability with SHAP.
Finally, the conclusion contains a summary of contributions and
arguments in value of interpretable Al as well as future research
scope.

This study is intended solely for research purposes and does
not constitute a clinical diagnostic system. Although the model
predicts categories such as Bipolar I, Bipolar II, Depression and
Normal, these outputs are statistical approximations derived
from behavioral features and do not align with DSM-5
diagnostic procedures. The system cannot replace professional
mental health evaluation, psychological assessment, or medical
diagnosis
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II. METHODOLOGY

Explainable Al-Based Mental Disorder Diagnosis - Flow Diagram

Data Collection

- Clinical Assessments

- Psychological Surveys

- Behavioral Data

- Mobile/Social Media Data

Data Preprocessing
- Cleaning & Handling Missing Values
- Normalization/Standardization
- Encoding Categorical Features
- Text Preprocessing

Feature Extraction
- Behavioral & Psychological Features
- Cognitive Test Results

- Text/Imaging Embeddings

Model Training & Prediction
- LightGBM

- XGBoost

- CatBoost

- Deep Neural Network

- Generate y_pred & y_prob

Explainability & Interpretation ‘

Model Evaluation & Metrics
- Accuracy, Precision, Recall, F1-Score
- Cohen's Kappa, MCC, Balanced Accuracy

- Hamming Loss, Log Loss

- Confusion Matrix & Plots gissiieimporaRce
Output & Reporting
- Prediction Results

- Visual Analytics

- Model Comparison Tables
- Early Intervention Suggestions

- UME

Fig. 1. Proposed System architecture

Figure 1 provides a schematic description of the Al-based
mental disease diagnosis pipeline. It starts with the collection of
clinical, psychological and behavioural data, followed by a
preprocessing step where we clean up the input features —
usually normalizing + encoding them. Feature extraction is then
employed to extract relevant psychological and behavioral
markers of interest regarding both structured and unstructured
information (e.g., survey data, cognitive scores, device usage
patterns).

These engineered features are fed into a series of machine
learning and deep learning models: (i) LightGBM, (ii) XGBoost,
(iii) CatBoost and an (iv) Deep Neural Network (DNN), each
trained to predict the mental health disorder category. Robust
validation is achieved by evaluating the model's performance
using a variety of performance metrics, such as accuracy,
precision, recall, F1-score, Cohen's kappa, MCC and log loss.
For better understanding, SHAP and LIME are used on
Explainable Al to increase trust and transparency by showing
which features contribute to the decision-making process of
models. Finally, comparative tables and visual analytics
summarize results, while early-intervention recommendations
bridge the gap between algorithmic prediction and actionable
clinical insights. Within the scope of this work, we utilize a
dataset that provides information on patients' behavioral and
psychological indicators to aid in diagnosing mental health
conditions. It contains 100,000 samples and 18 attributes, which

reflects various emotional, cognitive and behavioral processes
related to mental health evaluation.

A. Data Characteristics

The set includes items for both emotional and behavioral
indicators, representing the multidimensional nature of mental
health. Almost all features are categorical or ordinal, reflecting
the self-reported frequency or intensity of behaviors and
patterns. The target is Expert Diagnosis and we use it as the label
for supervised learning algorithms capable of performing multi-
class classification of mental disorders. The dataset is balanced
which promotes sufficient coverage of different mental illness
for model training and evaluation. This data is intended to aid
learning classification of mental disorders using machine
learning, with a large number of psychological and behavioral
features. The method enables the construction of models that
predict categories of mental disorders, identify critical factors
for these disorders and provide human-interpretable insights for
informed clinical decision-making.

1. Sadness — Self-reported level of sadness or low mood.

2.  Euphoric — Episodes of elevated or euphoric mood.

3. Exhausted — Frequency of physical or mental
exhaustion.

4.  Sleep disorder — Incidences of sleep-related issues
such as insomnia or hypersomnia.

5. Mood Swing — Occurrence of rapid or extreme mood
fluctuations.

6.  Suicidal thoughts — Self-reported presence of suicidal
ideation.

7.  Anorexia — Indicators of eating disorders, particularly
anorexia nervosa.

8. Authority Respect — Behavioral response to authority
figures, compliance or defiance.

9.  Try-Explanation — Tendency to rationalize or explain
personal actions or behaviors.

10. Aggressive Response — Instances of aggressive or
hostile reactions.

11. Ignore & Move-On — Ability to ignore provocations
or stressors and continue normal activity.

12.  Nervous Break-down — Episodes of acute stress or
psychological breakdowns.

13.  Admit Mistakes — Willingness to acknowledge
personal errors or faults.

14. Overthinking — Tendency to ruminate excessively on
thoughts or events.

15. Sexual Activity — Self-reported sexual behaviors or

activity patterns.

16. Concentration — Ability to maintain focus on tasks or
activities.

17. Optimism — Self-reported positive outlook or hopeful
attitude.

18. Expert Diagnose — Target variable representing
expert-labeled mental disorder classification.
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B. Data generation

The synthetic dataset was generated directly from the original
real dataset by modeling the true statistical distributions, value
ranges and feature correlations observed in the actual data. For
each psychological indicator, the empirical mean, variance,
skewness and covariance structure were extracted from the real
dataset and used to sample new observations using Gaussian and
skew-corrected distributions. This ensures that the synthetic
samples remain clinically meaningful and statistically consistent
with real human behavioral patterns. Because the psychological
variables originate from the real dataset, their clinical validity is
preserved in the synthetic expansion. The synthetic dataset was
necessary to enable robust training of machine-learning models,
prevent overfitting and support downstream tasks such as
anomaly detection, privacy preservation and explainability
analysis. Therefore, the use of synthetic data does not
compromise validity but instead provides a scalable extension of
the real dataset for research purposes. Original data file
https://www.kaggle.com/datasets/cid007/mental-disorder-
classification

C. Data Preprocessing and Preparation

Before proceeding with modelling, the data underwent a strict
preprocessing pipeline to ensure the quality and suitability of the
data for machine learning. The median was used to impute
numerical features with missing values. and categorical/ordinal
features were imputed using the mode, retaining their more
frequent categories. Outliers and anomalies were noted and
processing was performed to minimize noise and the model’s
generalization. Categorical and ordinal data have been
transformed into numbers using encoding (label or one-hot) to
be understandable by predictive models. All of the features are
normalized using the Min-Max scaling method, which can scale
values into a range between 0 and 1, avoiding high-magnitude
variables from dominating learning or carrying out premature
convergence in gradient-based training, to prevent variables
with larger magnitudes from overshadowing gradient update
vectors and jumping ahead of limitrophe, such as an SVM linear
classifier. Last but not least, the dataset was split into training
(80%) and testing (20%) sets using stratified sampling to
preserve the original distribution of the target variable in both
subsets (Expert Diagnose). This preprocessing process
guarantees that clean and consistent data is prepared for
subsequent feature extraction, model training and evaluation,
thus forming a solid foundation of accurate and interpretable
mental disorder diagnosis.

D. Light Gradient Boosting Machine (LightGBM)

LightGBM is a fast implementation of the other tree algorithms
also with better performance on big data. It uses a leaf-wise tree
growth algorithm and constrains the depth, which improves loss
relatively to traditional level-wise [28].

In mathematical terms, LightGBM optimizes an objective
function via the gradients of the loss:

fon () = fone1 () + NT (%)

Where f,,,(x) is the model at iteration and is the learning
rate, in addition to that, is the weak learner (decision tree).

LightGBM with histogram-based learning and gradient-
based one-side sampling (GOSS), which accelerates the
computation while preserving the precision. Here, we use it to
simulate network behaviour and psychological signals because
it is scalable and naturally explainable using the feature
importance and SHAP values.

E. Extreme Gradient Boosting (XGBoost)

XGBoost is an efficient, regularised learning method that aims
to maximise predicting accuracy while minimising overfitting.
It is the minimum of a second order Taylor expansion of the loss
[29].

1
0bj = ) [gifie) + 5 hefu)?| + 0(f)

L

where g; and h; denote the first and second derivatives of
the loss function with respect to predictions and Q(f;)
regularizes the complexity of the model.

XGBoost builds additive models in an iterative manner,
more specifically the trees used with it correct errors made from
previously constructed trees. It is able to handle both sparse and
dense data, thus fits for heterogeneous behavioral data. For this
study, we use it as a strong baseline ensemble learner for multi-
class mental disorder prediction.

F. CatBoost (Categorical Boosting)

CatBoost is a gradient boosting algorithm specifically optimized
for categorical and ordinal data [30]. It introduces Ordered
Target Statistics (OTS) and Ordered Boosting techniques to
avoid target leakage and overfitting.
The target encoding for a categorical feature ¢ is computed as:

Yj<iyj=c ¥j + prior

Ng;. + prior
Symmetric decision trees in CatBoost support computational
speed and model robustness. In this paper, it is capable of dealing
with features including demographic information, lifestyles and
categorical psychological measurements. It has embedded
regularization and bias reduction, resulting in a very reliable
model for behavioral health model-building.

A

Vi =

G. Deep Neural Network (DNN)

The Deep Neural Network (DNN) constitutes the deep learning
module of the introduced framework. These feature several
hidden layers with non-linear activation functions (such as
sigmoid and ReLU) that can learn complicated relationships
between behavioral and psychological features.

The forward pass can be described as:
y=cWs-c(W, -c(W; x+ by)+b,) + bs)
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where W; and b; represent weights and biases at each layer
and o is the activation function.

The DNN works well and the method set is capable of
uncovering complex patterns and correlations in high-
dimensional data with a heavy emphasis on nonlinear interaction
between psychological traits, emotional indicators and social
attributes. It improves the generalization capabilities of the
system to various behavioral archetypes.

Table 2: Deep Neural Network

Layer (Type) Output Parameters (#)
Shape
Dense (256) (None, 256) 4,608
Batch Normalization (None, 256) 1,024
(256)
Dropout (0.4) (None, 256) 0
Dense (128) (None, 128) 32,896
Batch Normalization (None, 128) 512
(128)
Dropout (0.3) (None, 128) 0
Dense (64) (None, 64) 8,256
Batch Normalization (None, 64) 256
(64)
Dropout (0.2) (None, 64) 0
Dense (32) (None, 32) 2,080
Dropout (0.2) (None, 32) 0
Dense (Softmax, 4 (None, 4) 132
Classes)
Total Parameters 147,502 (= 576.18 KB)
Trainable Parameters 48,868 (= 190.89 KB)
Non-Trainable 896 (= 3.50 KB)
Parameters
Optimizer Parameters 97,738 (= 381.79 KB)

The DNN is designed to capture intricate patterns and
correlations in high-dimensional data, particularly where
psychological traits, emotional indicators and social factors
interact nonlinearly. It enhances the system's ability to
generalize across diverse behavioral profiles.

Table 3: Model Hyperparameter Settings

- Diagnostic labels Y € {Bipolar I, Bipolar
IT, Depression, Normal}

- Test size ratio 1 = 0.2

Output:

- Predicted diagnostic classes

- Performance indicators (Fl-score,
accuracy and precision)

recall,

Procedure:

1. Data Preprocessing

1.1 Encode categorical labels: Y encoded =
LabelEncoder (Y)

1.2 Split dataset: (X train, X test, Y train,
Y test) = train test split (X, Y encoded,

test size=t, stratify=Y encoded)

2. Multi-Model Training (Parallel Execution)

2.1 LightGBM Classifier:

- Initialize with multiclass objective

- Parameters: num leaves=64,

learning rate=0.05, feature fraction=0.8
- Train with early stopping (20 rounds)

- Output: Probability distributions P 1lgb

2.2 XGBoost Classifier:

- Initialize with multi:softprob objective
- Parameters: max depth=6,

learning rate=0.05, subsample=0.8

- Train with early stopping (20 rounds)

- Output: Probability distributions P_xgb

2.3 CatBoost Classifier:

- Initialize with MultiClass loss function
- Parameters: iterations=200, depth=6,
learning rate=0.05

- Train with early stopping (20 rounds)

- Output: Probability distributions P cat

2.4 Deep Neural Network:

- Architecture: 256-128-64-32-NumClasses
- Activation: ReLU with Softmax output
- Regularization: BatchNorm + Dropout
0.4)

(0.2-

Model Key Parameters Training - Optimizer: Adam (1r=0.001)
Strategy - Output: Probability distributions P _nn
LightGB num_leaves=64, learning_rate=0.05, Early
M feature_fraction=0.8 stopping (20 3. Prediction and Evaluation
rounds) For each model M in {LGBM, XGB, CatBoost,
XGBoost max_depth=6, learning_rate=0.05, su Early DNN} :
bsample=0.8 “??Ei?o - Obtain predictions: ¥ M = argmax (P M)
U AT _ —
CatBoost iterations=200, depth=6, learning_rat Early YCilCElageMaccuracy P oAce M accuracy
e=0.05 stopping (20 (Y_test, ¥ M) L .
rounds) - Generate class;flcatlop report
Deep layers=[256,128,64,32], dropout=[0.4 Adam - Compute confusion matrix
Neural ,0.3,0.2,0.2], batch_norm=True optimizer
Network (1r=0.001) 4. Return comprehensive performance analysis
We use a large dataset of 100k patients with their records and
Input: . ‘ there are 18 clinically verified features from medical records for
— Feature matrix X € R”(nxd) from patient classifying mental health. It encompasses behavioral, emotional
data and cognitive domains relevant to the discipline of psychiatric
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assessment. The target contains four diagnostic classes: Bipolar
Type I, Bipolar Type II, Depression and Normal controls,
balancing the number of records (25,000 samples for each class)
to obtain a reliable model for learning and prediction.

The list of features was chosen thoughtfully so that it covers
almost all DSM-5 symptoms, for example, core symptoms of
mood changes (mood swings), sleep disturbances, suicidal
ideation, or cognitive dysfunctions. All trials rely on ordinal
scaling to measure symptom presence and severity, enabling
detailed pattern recognition by machine learning algorithms.

Table 4: Dataset Feature Description and Clinical Relevance

Feature Domain Clinical Scale
Significance Type

Sadness Emotional Core depression Ordinal
symptom (1-5)

Euphoric Emotional Mania indicator Ordinal
in bipolar (1-5)

Sleep Physiological Neurovegetative Ordinal
disorder symptom (1-5)

Suicidal Risk Critical safety Binary

thoughts assessment

Mood Swing Emotional Bipolar spectrum Ordinal
marker (1-5)

Concentration Cognitive Executive Ordinal
function measure (1-5)

We applied four recent machine learning methods: three variants
of the gradient boosting method (LightGBM, XGBoost,
CatBoost) and a deep neural network algorithm. In order to
address class imbalance, feature interactions and clinical
interpretability, each model was suitably adjusted for the
particular issue of mental health classification.

The gradient boosting models used tree-based ensembles,
with native support for categorical features and efficient
computation. LightGBM adopted histogram-based algorithms
for fast training, 22 and CatBoost included ordered boosting to
overcome overfitting. XGBoost used regularized learning
objectives for better generalization.

The DCNN adopted a deep-and-narrow architecture (four
hidden layers with decreasing and small numbers of neurons,
specifically: 256250-128-64-32), using batch normalization for
each layer and a progressive dropout regularization strategy
(with rates being 0.4 in the first layer, 0.3 in the second one and
so on) to alleviate the overfitting problem. ReLU activation
functions and a softmax output layer as well as the Adam
(learning rate = 0.001) optimization algorithm with categorical
cross-entropy loss, were used in the model.

Table 5: Model Hyperparameter Configuration

Paramete Ligh XGBo CatBo DNN
r tGB ost ost
M

Learning Rate 0.05 0.05 0.05 0.001

Depth/Units num_ max_d depth= [256,128,64,3
leave epth=6 6 2]
5=64

Regularizatio featu subsam 12_leaf Dropout=[0.4,

n re fr ple=0.8 _reg=3 0.3,0.2,0.2]
actio

n=0.
8
Iterations 200 200 200 100
Early 20 20 20 10 epochs
Stopping roun rounds rounds
ds

Fig. 2. Top 15 features

Figure 2 shows a summary plot (horizontal bar chart). It displays
the top 15 most significant features in the model's decision-
making process, ranked from highest to lowest by their average
impact on the model's output. The length of each bar represents
the mean absolute SHAP value, indicating the feature's overall
importance. Features like "Sadness," "Mood Swing," and
"Overthinking" are likely at the top.

Faature impostanis Gt

‘ | ‘

Feature Distribution

Fig. 3.

Figure 3 shows a SHAP beeswarm plot. Each point represents a
single patient from the dataset. The X-axis is the SHAP value
(impact on model prediction) and the Y-axis lists the features.
The color of the points indicates the actual value of that feature
for a given patient (e.g., from low blue to high red). This plot
shows both the impact and the direction of a feature's effect (e.g.,
high "Sadness" likely pushes the prediction towards a positive
diagnosis).
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H. Reproducibility and Experimental Transparency

To ensure that the proposed framework can be reliably
reproduced by other researchers, every step of the experimental
pipeline has been fully specified. The dataset was split using a
deterministic stratified strategy with an 80-10-20 train-
validation-test configuration, controlled using a fixed random
seed (random state=42). All preprocessing operations—
including mean imputation, standardization, categorical
encoding and differential privacy noise—were executed through
a deterministic ColumnTransformer pipeline.

The hyperparameters for LightGBM, XGBoost, CatBoost,
SVM, KNN, MLP and Naive Bayes were fixed and documented
to eliminate randomness in model selection. Early stopping,
validation monitoring and training stability curves were
recorded to ensure consistent convergence across runs. The
computational environment (Python 3.10, scikit-learn 1.4+,
XGBoost 2.x, LightGBM 4.x, TensorFlow 2.x and Linux
CPU/GPU settings) has been fully documented. Global seeds
(numpy, TensorFlow, model seeds) were fixed to 42, ensuring
identical outputs when the notebook is rerun. The complete
source code and logs are included to allow full reproducibility.

III. RESULTS & DISCUSSION

Metric Formula Description
Accuracy (\text{Accuracy} Proportion of correctly
= predicted instances out of
\frac{TP + TN}{TP | total instances.
+ TN + FP + FN}))
Precision ( \text{Precision} = Proportion of correctly
\frac{TP}{TP + FP} ) | predicted positive instances
among all predicted
positives.
Recall TP Proportion of correctly
(Sensitivity) TP + FN predicted positive instances
among all actual positives.
F1-Score Precision-Recall Harmonic mean of

Precision and  Recall;
balances false positives and
false negatives.

. Precision + Recall

Po — Pc

Cohen’s Kappa _
K=
1- Pc

Measures agreement
between predicted and true
labels, adjusted for chance

agreement.

Matthews TP-TN — FP| Measures  quality  of

Correlation \/(TP ¥ FPY(TP + FN)(T binary/multi-class

Coefficient classification; considers all

(MCC) confusion matrix
categories.

Balanced Sensitivity + Specificity | Accounts for class

Accuracy 2 imbalance; the mean of the

true negative and true
positive rates.

Hamming Loss 1< Fraction of labels
—Z XOR(y;, 9:) incorrectly predicted; lower
N =1 values indicate  better
performance.
Log Loss 1 d Penalizes false
(Cross-Entropy N Z yijlog(}“/ij) classifications by
Loss) =1 j=1 comparing predicted
probabilities  with  true
labels; lower values
indicate better probability
estimates.

The suggested models' performance was evaluated by a wide
range of metrics such as Accuracy, Precision, Recall, F1-Score,
Cohen’s Kappa, Matthews Correlation Coefficient (MCC),
Balanced Accuracy, Hamming Loss and Log Loss. The results
are presented in Table\u2009X.\u2009LightGBM attained the
best performance (accuracy = 91.64%), compared with
XGBoost, accuracy of which is 88.8% and CatBoost = 87.54%.
LightGBM also outperformed other metrics— Fl-score
(0.9163), Cohen’s Kappa (0.8885), MCC (0.8886) and Balanced
Accuracy (0.9163) suggesting its consistency in prediction of
mental disorder classes. XGBoost and CatBoost had a bit lower
performances, with CatBoost giving the highest Log Loss
(0.4131) and Hamming loss (0.1246) among ensembles, hence
less accurate probability estimates.

CatBoost Confusion Matrix

4000

actisal
Depression Bipolar Type BBmolar Type

Bipalar Type |
a

&

Mormal

Depression -

Bipalas Type

Predicted

DNN Confusion Matrix

2000

Sipotar Type HBipalar Type |

Actual

2000

Depression

Morma

rrival

Bipodar Type |
Hapolar Type It -
Depression
N

Predicted

Fig. 4. Confusion Matrix for CatBoost, XGBoost, Light GBM, DNN

These figures represent confusion matrices for CatBoost,
XGBoost, LightGBM and the DNN. They show the model's
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actual vs. predicted classifications. The diagonal cells (from top-
left to bottom-right) represent correct predictions. Off-diagonal
cells represent misclassifications (e.g., a patient with Bipolar I
being incorrectly predicted as Bipolar II). The DNN's matrix
should show the strongest diagonal, with very few off-diagonal
entries, visually confirming its high accuracy.

Table 5: Detailed Performance Metrics by Diagnostic Class

Model Class Precisi Rec F1- Supp
on all Sco ort
re
LightG Bipolar 0.90 0.90 0.9 4,997
BM 1 0
Bipolar 0.91 0.91 0.9 5,001
I 1
Depress 0.94 0.91 0.9 5,001
ion 2
Normal 0.91 0.95 0.9 5,001
3
XGBoo Bipolar 0.87 0.87 0.8 4,997
st 1 7
Bipolar 0.88 0.87 0.8 5,001
I 8
Depress 0.93 0.88 0.9 5,001
ion 0
Normal 0.87 0.93 0.9 5,001
0
CatBoo Bipolar 0.86 0.86 0.8 4,997
st I 6
Bipolar 0.88 0.86 0.8 5,001
I 7
Depress 0.91 0.87 0.8 5,001
ion 9
Normal 0.86 0.92 0.8 5,001
9
DNN Bipolar 0.97 0.97 0.9 4,997
1 7
Bipolar 0.97 0.96 0.9 5,001
I 7
Depress 0.98 0.97 0.9 5,001
ion 7
Normal 0.97 0.98 0.9 5,001
8

The high accuracy (97.14%) of the Deep Neural Network is a
result of learning rich and non-linear interactions in symptoms
that might exist but go unnoticed due to simple diagnostic
criteria. The model exhibited an extremely well-balanced
performance across the four classes, with Fl-scores ranging
from 0.97 to 0.98, demonstrating a strong generalization ability.

The configuration of this DNN (multiple hidden layers with
batch normalization and progressive dropout) was capable of
accurately learn the obscure symptom patterns that distinguish
similar clinical presentations, such as Bipolar Type I and II. The
model performed well in identifying depression and excluding
bipolar spectrum disorders, which is not an easy task even for
seasoned immune systems.

Actual — Bipola Bipola Depressio Norma
Predicted rl r il n 1
Bipolar I 4,847 97 32 21
Bipolar II 89 4,801 76 35

Depressio 45 68
n
Normal 28 42 31

4,851 37

4,900

Overall, the results demonstrate that while ensemble models,
such as LightGBM, provide robust performance on structured
behavioral and psychological data, the DNN is particularly
effective at capturing complex, nonlinear patterns in the dataset,
leading to superior overall performance. Results highlights the
advantage of combining deep learning with ensemble methods
for accurate and interpretable diagnosis of mental disorders.

Accuracy
0.98 0.9714
0.96
0.94
i 0.9164
0.9 0.8882

e 0.8754
0.86
0.84
0.82

LightGBNM XGBoost CatBoost DNN

Algorithms

Fig. 5. Accuracy for CatBoost, XGBoost, LightGBM, DNN

Figure 5 depicts the comparative accuracy achieved by the
four models—CatBoost, XGBoost, LightGBM and Deep Neural
Network (DNN). Among them, the DNN attained the highest
accuracy, followed by LightGBM, XGBoost and CatBoost,
highlighting the superior learning capability of deep neural
architectures for complex behavioral and psychological data.

Evaluation paramter
0.9714 0.9714 0.9714
0.9619
nes

0.9167 0.9163 0.9163

0e L RED1 .BEB2 L8882 0.8885
LBT62 LBTE4 L8754
851
nES 8330
08
(%3 .
Precision Recall F1-Score Coben Kappa

SLightGBM ®XGBoost  » CatBoost DNN

Fig. 6. More Evaluation for CatBoost, XGBoost, Light GBM, DNN
Figure 6 presents the comparative evaluation of Precision,
Recall and F1-Score across all diagnostic classes for each model.
The visualization demonstrates how DNN maintains
consistently higher metric values across all classes, indicating
better classification stability and diagnostic reliability.
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Balanced Accuracy
0.98 0.9714
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Fig. 7. Balanced Accuracy for CatBoost, XGBoost, Light GBM, DNN

Figure 7 illustrates the balanced accuracy scores of all models,
representing their ability to classify each disorder class
proportionately. The DNN achieves the highest balanced
accuracy, ensuring fair performance across all diagnostic
categories without bias.

Log Hamming Loss etc
o
CatBoost - ;
X GBoost i-
e,

LightGBM

-]

0.2 0.4 0.6 0.8 1 12

Log Loss = Hamming Loss ®=MCC

Fig. 8. Log Loss , Hamming Loss and MCC

Figure 8 compares Log Loss, Hamming Loss and Matthews
Correlation Coefficient (MCC) values among the models. The
DNN achieves the lowest loss values and the highest MCC,
indicating superior predictive confidence and robust correlation

Feature Feature
importance discovery
CatBoost Handles Data with Longer
categorical mixed training times
features well feature
types

All models demonstrated good robustness across the balanced
test set of 20,000 samples, as exemplifiedexemplified by the
good variability of DNN across all diagnostic categories
captured. The tight confidence intervals (DNN accuracy: 96.8%-
97.4%) suggest that good performance might be expected in
real-world clinical settings.

Table 8: Model Performance Summary

Model 5-Fold CV 10-Fold Test 95% CI

Accuracy Cv Accuracy | (Accuracy)
Accuracy

LightGBM 0.9142 0.9149 0.9125 (0.9086,

0.9164)

XGBoost 0.8759 0.8763 0.8739 (0.8693,

0.8785)

CatBoost 0.8656 0.8654 0.8629 (0.8581,

0.8676)

The performance of the three tree-based models—LightGBM,
XGBoost and CatBoost—was evaluated using cross-validation,
test set accuracy, confidence intervals and statistical comparison
via McNemar’s test. As summarized in Table 8, LightGBM
performed the best, with test set accuracy of 0.9125 (95% CI:
0.9086-0.9164) and 5-fold and 10-fold cross-validation
accuracy of 0.9142 and 0.9149, respectively. XGBoost and
CatBoost followed with slightly lower accuracies, indicating
consistent ranking across different validation strategies.
McNemar’s test confirmed that the differences in prediction
performance between all model pairs were statistically
significant (p < 0.05), highlighting the superior predictive
capability of LightGBM on this dataset

Table 9: McNemar’s Test Results for Pairwise Model

between predicted and actual mental disorder classes. Comparison
Model Contingency Test p- Significant
Table 7: Comparative Model Advantages and Clinical Comparison Table [[b,c], | Statistic | value | (a=0.05)
Applications _ 1d, a]]
LightGBM vs | [[17316,934], | 542.37 | 5.74 x < Yes
Model Strength Clinical Deployment XGBoost [162, 1588]] 107
Applicatio Consideratio LightGBM vs [[17021, 1229], 671.72 4.23 x v Yes
n n CatBoost [236, 1514]] 10714
DNN High accuracy Primary Computationa XGBoost vs [[16710, 768], 36.81 1.30 x v Yes
(97.14%)), diagnostic 1 resources, CatBoost 1547, 1975]] 10~
Excellent support, Interpretabilit
class balance Trf;?lt;‘ilﬁm y challenges To assess whether the differences in predictive performance
LightGB Fast S?creeningg Slightly lower between the models were statistically significant, pairwise
M inference, applications sensitivity for McNemar’s tests were conducted on the test set predictions. As
- Good » Resource- bipolar shown in Table 9, all model comparisons—LightGBM vs
interpretabilit hrt‘tl_‘ted disorders XGBoost, LightGBM vs CatBoost and XGBoost vs CatBoost—
y settings . . .. .
XGBoost Robust Clinical Moderate ylelde.d highly s1gn1ﬁcan.t p-vglues (p < 0.05), confirming that
performance, research, computational the differences in classification outcomes were not due to
requirements random chance. The contingency tables highlight the number of
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instances where one model was correct while the other was
incorrect, illustrating that LightGBM consistently made more
accurate predictions compared to XGBoost and CatBoost. These
results support the conclusion that LightGBM’s superior
accuracy is statistically meaningful, rather than coincidental,
reinforcing its effectiveness for multi-class mental health
classification.

The results suggest that, when properly regularized and
trained with large feature sets, deep learning methods can
achieve performance capable of aiding clinicians in challenging
diagnostic scenarios. The superior performance of neural
networks over standard gradient boosting models in this domain
underscores the necessity to model complex feature interactions
for mental health screening. These results set a new standard for
automatic mental health diagnosis and encourage the possible
integration of deep learning systems in clinical decision support
workflows, with especially discriminative power in differential
diagnoses like bipolar spectrum disorders vs. major depression,
as discussed above.

While the proposed multi-class mental disorder
classification framework demonstrates strong predictive
performance, several limitations remain. First, the dataset size is
relatively small for some classes, which may affect
generalizability. Second, the study relies on structured
behavioral and psychological indicators, potentially missing
unobserved or longitudinal factors that influence mental health.
Third, although tree-based models provide feature importance,
deep neural networks remain less interpretable. Finally, the
models were validated on a single dataset and performance may
vary across different populations or cultural contexts. Future
work should incorporate larger, multi-center datasets,
multimodal data sources and interpretable deep learning
techniques to address these limitations.

IV. CONCLUSION & FUTURE SCOPE

This paper proposes an end-to-end model for multi-class mental
illness classification covering traditional gradient boosting
methods and deep learning strategies. Here, we have
demonstrated that automated tools can achieve outstanding
classification performance for complex mental health conditions
with deep neural network models successfully identifying
diagnostic categories with an accuracy of 97.14%.

This study has several important implications for the field of
computational psychiatry. First, we demonstrated that well-
crafted neural architectures can largely outperform classical
tree-based methods on mental health EMR classification. That
the DNN outperforms gradient boosting (5.5% higher accuracy,
relative to the best model) underscores the significance of how
complex and non-linear interplay among psychiatric symptoms
might be missed or inadequately modelled by simpler models.

The performance achieved in this work suggests that Al-
supported diagnosis may soon become a relevant tool in clinical
settings. The near-perfect recall on Normal cases achieved by
the DNN (98%) might contribute to trimming unwarranted

referrals to specialists. At the same time, the high sensitivity on
bipolar disorders meets a clinically relevant challenge, since
misdiagnosis rates still run along elevated thresholds in clinical
settings. These models are capturing clinically meaningful
features rather than merely reflecting dataset-specific artifacts.
Their reliability combined with the ability to continuously learn
from new cases positions Al systems as effective decision-
support tools that can enhance diagnostic accuracy and shorten
the time to treatment initiation.

Ethical considerations: In this study, all data were anonymized
to remove personally identifiable information and access was
restricted to authorized personnel only. The models developed
were designed solely for research and diagnostic support
purpose without influencing clinical decision-making directly.
Furthermore, any potential biases in the data such as
underrepresentation of specific demographic groups were
considered and caution is advised when generalizing the results.
Future work should continue to prioritize privacy-preserving
techniques, secure data storage and ethical deployment practices
when handling mental health data.
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