
Deep Learning Based Software Defect Risk Prediction Using

Fuzzified Cluster Neural Network Feature Selection with

Generative Adversarial Transfer Learning

V.Ruckmani1,* and Dr. Prakasam S2
1Research Scholar, Computer Science and Applications, SCSVMV University, Enathur

2Associate Professor, Computer Science and Applications, SCSVMV University, Enathur

Abstract

 Software defect prediction (SDP) plays a significant role in detecting the most likely
defective software modules and optimizing the allocation of testing resources. In practice,
though, project executives must not only identify defective modules, but also rank them in a
specific order to optimize the resource allocation and minimize testing costs, especially for
projects with limited resources. However, existing approaches face challenges in achieving
reliable predictions. To address this, a novel approach is proposed the method is Fuzzified
Cluster Neural Network feature selection with Generative Adversarial Transfer Learning
(GATL). The proposed work includes four major phases: (a) pre-processing, (b) Feature
Extraction and (b) deep learning-based SDP classification. Initial stage is we collected the
dataset from standard repository and starting the pre-processing step is used for cleaning the data
and transforming and normalizing the data for get original dataset. Second step is estimating the
original data feature weightage values using Adaptive Static Feature weights Analysis (ASFWA)
and third step is Fuzzified Cluster Neural Network feature selection is extracted features, the
relevant ones are selected using the Fuzzified Cluster Neural Network feature selection. Finally,
the SDP (decision making) is carried out using the optimized Generative Adversarial Transfer
Learning (GATL) using to improve the model's prediction accuracy. The final detected outcome
(predicting the defects ranking like high low and medium scores) is acquired from optimized
GATL. The implementation has been performed using the Python software. By using certain
performance metrics such as Sensitivity, Accuracy, Precision, Specificity and MSE the proposed
model’s performance is compared to that of existing models. The accuracy achieved for the
proposed model.

Keywords: Software defect prediction, deep learning, Feature weights, Python software, Cluster,
fuzzy, neural Network.

1. Introduction

 Software Defect Prediction (SDP) technology is an effective tool for improving software
system quality that has attracted much attention in recent years. With the increasing scale, the
structure of a software system becomes increasingly complex. Software defects occur for several
reasons, such as a misunderstanding of the software requirements, an ineffective development
process, or a lack of software development experience—generally, defective software results in
unanticipated economic losses to enterprises and even human-related costs [1]. If software
defects can be found during the early stage of development, the software quality can be
improved, and the related fees will be reduced.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 396

SDP can construct models by mining version control systems and defect tracking
systems, and then the constructed models can be used to predict defective modules in advance.
Therefore, limited software quality assurance (SQA) resources can be reasonably allocated to
these identified defective modules, effectively improving the quality of deployed software.
However, a target project may sometimes be new or have a few labeled modules [2]. The most
straightforward method is directly using the labeled modules in other projects to train the
models. Machine learning algorithms trained on these class-imbalanced datasets may be biased
towards non-defective instances and misclassify defective cases [3]. The prevalent methods for
tackling class imbalance problems are sampling, cost-software defect, and ensemble learning
methods. These over-sampling methods can improve classifiers to identify more instances in
minority class, but at the same time they may lead to misclassify many instances in majority
class.

A wide range of statistical and machine learning models have been employed to predict
defects in software modules [4]. However, the imbalanced nature of this type of SDP dataset is
pivotal for the successful development of a defect prediction model. which has attracted a lot of
attention from the industrial communities and academicians over the last three decades. It allows
software engineers to allocate a limited workforce, time, and other resources to defect-prone
modules through early defect prediction. It also plays a vital role in reducing software
development costs and maintaining the high quality of software systems.

The prediction results can assist developers in prioritizing their testing and de-defecting
efforts. As a result, software defect prediction techniques, which predict the occurrence of
defects, have been widely used to assist developers in prioritizing their testing and de-defecting
efforts. However, the increasing complexity of modern software has elevated the importance of
software reliability [5]. Building highly reliable software requires a considerable amount of
testing and de-defecting. However, since budget and time are limited, these efforts must be
prioritized for efficiency.

 However, the performance of cross-project defect prediction is relatively low because of
the distribution differences between the source and target projects. Furthermore, the software
defect dataset used for cross-project defect prediction is characterized by high-dimensional
features, some of which are irrelevant and contribute to low performance. However, the cost of
software testing is almost half of the development cost [6]. Consequently, managing the available
limited resources is paramount in a situation where resources are limited. However, in practice,
for new projects or companies that lack local defect data repositories because of the cost of
maintaining such repositories, it will be challenging to apply SDP.

2. Literature Survey

 Accordingly, they use data analysis and Machine Learning (ML) algorithms to selectively
reduce data dimensionality associated with critical features in SPD [7], allowing energy to be
focused on areas where power is needed, thereby playing an essential role in achieving the SDP
objective.

 They proposed a point-centering approach utilizing the K-means algorithm to address the
issue of random centroid values in K-means. They employed software to forecast errors in

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 397

defective blocks to identify the optimal initial centroid value [8]. Nevertheless, the suggested
approach does not yield ideal outcomes for arbitrarily selecting centroid points.

They proposed a transformation and feature selection method to reduce distributional
disparities and high-dimensional features in inter-item defect prediction [9]. However, source
and target projects have different distributions, and cross-project defect estimates perform poorly.

 A deep neural network (DNN) based model specifically created to forecast the number of
defects is applied to the modeling data. Additionally, two well-known datasets will be used to
assess the suggested approach [10]. Moreover, to effectively utilize the limited resources
available to developers, it is imperative to automatically anticipate the number of errors in a
software module.

 They recommend using process metrics, source code churn rate, and source code metric
entropy as predictor variables in future defect prediction studies. Furthermore, the cautious use
of single metric methods as predictor variables is presented [11]. Previous defect metrics and
other single-metric methods have performed poorly.

 The novel described developing a comprehensive SDP method that uses decision tree-
based algorithms to enhance accuracy, feature selection, and evaluation metrics [12]. The offered
method has led to significant losses, including financial loss, damage to a company's reputation,
and, in extreme cases, loss of life.

 They introduced Human Error-Based Defect Prediction (HEDF) by investigating the
cognitive processes behind developer errors. Specify defects in early software development
stages before coding to predict them accurately [13].

The proposed Multi-Criteria Decision-Making (MCDM) method utilizes defect
prediction and feature selection rates to evaluate candidate solutions [14]. Nonetheless, in the
software industry, early software defect prediction is vital.

They proposed a Multi-Layer Perceptron (MLP) method based on an ensemble
classification framework to predict defective software modules. After the first dimensional
optimization, they implemented the MLP algorithm for classification with improved packaging
technology integration [15].

Table:1 Deep Learning Based on Software Defect Prediction

Author Year Technique Used Drawback Performance

Evaluation

Accuracy

A A Saifan
[16]

2021 Support Vector
Machine (SVM)

The presence of
software defects
diminishes the quality
and results in project
failure.

Area Under
Curve (AUC)

75%

Lin J. [17] 2021 bi-directional long
short-term
memory
(BiLSTM)

The sequence of
tokens alone is not
sufficient to
distinguish the tree
structure of an abstract

Recall, F-
measure, AUC,
and Matthews
Correlation
Coefficient

68%

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 398

syntax tree. (MCC)
Mehmood
[18]

2023 Logistic
Regression (LR),
SVM

It is crucial to connect
software engineering
and data mining.

Accuracy 93.05%

Miholca D.L
[19]

2022 artificial neural
network (ANN)

SDP is a challenging
problem in the highly
active field of
analyzing large
complex systems.

Sensitivity,
Specificity

95%

Majd,
Amirabbas
[20]

2020 LSTM Poor quality software
can result in
significant financial
costs.

Sensitivity,
Recall

72%

Mehta, S
[21]

2021 Recursive Feature
Elimination (RFE)

The testing process is
vital in software
development

Precision, F-
Measure

93%

O. A. Qasem
[22]

2020 MLP,
Convolutional
Neural Network
(CNN)

Poor quality due to
software defects.

Sensitivity,
Accuracy

89%

Li, Zhen [23] 2021 particle swarm
and the wolf
swarm algorithm

Timely elimination of
software defects is
crucial to avoid severe
financial losses.

Recall rate,
Precision

76%

Rathore S.S
[24]

2022 generative
adversarial
network (GAN)

Software practitioners
face a challenge in
managing asymmetric
error data.

Recall, F1-
score,

79%

Šikić L [25] 2022 Graph
Convolutional
Neural Network
(GCNN)

Attention to a small
part of the code
because the source
code ignores its tree
structure.

F-score 81%

Tong [26] 2020 credibility-based
imbalance
boosting (CIB)

Categorizing software
defects as either
defective or non-
defective complicates
predicting them.

AUC, MCC 87.6%

They proposed a deficit prediction model based on a Gated Hierarchical Long-Short-Term
Memory (GH-LSTM) network to extract semantic features from word embedding structures
[27]. However, they may need to correct feature defects such as lines of code.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 399

 They are analyzing software metrics and predicting defects using an automated tool
called GraphEvoDef. The evolution of software is described, and recent comparative
developments in networking are analyzed [28].

 Recent experiments have shown that semantic features based on Deep Belief Network
(DBN) technology can significantly enhance defect prediction tasks. Furthermore, when
comparing semantic features to traditional features, the improvement in file-level project defect
prediction ranges from 2.1 to 41.9 percentage points [29].

 The outcome demonstrates that structural information from software networks
considerably impacts CNN techniques, and the performance improves when paired with
semantic features. Additionally, the F-measure often rises with a maximum growth rate of 92.5%
compared to traditional structural features [30].

3. Proposed method

 Recently, ML techniques are being highly applied for automated SDP. These approaches
require reduce computation time and reduce manually extracted features. DL approaches enable
practitioners to automatically extract and learn from more complicated and high-dimensional
data. Therefore, in this research work, a novel GATL-based SDP model is introduced. The
proposed work includes the following phases:“(a) pre-processing, (b) Feature selection and
(c) classification.

 Figure 1: Proposed Diagram

 Figure 1 described as, Purposed diagram for software defect prediction using deep
learning based GATL for predicting the rosily (Risk level),the proposed method include
preprocessing to reduce null values and cleaning the data second step is to get preprocessed data
evaluating the feature maximum and minimum weights using Adaptive Static Feature weights
Analysis ,third step is feature selection based on the maximum threshold values using for

ANT S/w
dataset

Preprocessing stage

Data cleaning and
data

Feature weight
evaluation

Adaptive Static Feature weights Selecting the features

Fuzzified Cluster
Neural Network

Selects the high relevant feature

Generative Adversarial Transfer Learning (GATL)

Predicting Result

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 400

evaluating the high relevant features based on fuzzified cluster neural network. Finally
classification using GATL is predicting the result based on the risk factors.

3.1 Data Preprocessing

 Initially, the collected raw data is pre-processed via data cleaning and Decimal scaling
normalization approach. Since datasets frequently values, contain missing noise, and noticeable
changes in the size of the features, data pre-processing is frequently done before training ML
models. The following pre-processing steps have been used for the ANT software dataset.

Data cleaning -Missing Data Removal (MDR)

 The term "missing data" refers to information that is not recorded for a variable for
particular observation. Missing data lowers the analysis’s statistical power, which might skew the
conclusions' validity. To prevent bias when dealing with missing data at random, relevant data
may be eliminated. If there aren't enough observations to perform a reliable analysis, data
removal may not be the best solution. In some cases, it may be vital to keep a watch on specific
things

Given: ANT Software defect dataset

Obtain: preprocessed dataset

Begin

Read sdf data.

 Generate software defect dataset sdfd1, d2, d3 + pd (Index +1)

 Find features of sdf

 For each preprocessed data (Pd)

 If Pd contains all then

 Ok

 Else

 Remove null values

 End

 For each feature f

 If value is null then

F = fill with near average value.

 End

 End

 Add sdf to Pd.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 401

 End

 Stop

 The working of preprocessing algorithm is presented in the above pseudo code, which
finds the records with missing features which has been removed from the data set where the trace
with value missing are replaced with near mean value of the feature.

Figure 2 Flow chart of Data Preprocessing

 The flow chart of data preprocessing is presented in Figure 2. Where the method read
the trace and remove the noisy records and assigns null value with mean near value to support
the feature weights process.
3.2 Feature weights evaluation using

To obtain the features from more number of attribute cases and initially they count
reframes to reduce the dimension along the reduction. Secondly, to construct feature importance
weightage by marginal acceptance of varying margins of a feature importance. The Dominant
features weightage from weather dataset by retaining the Probability to getting the features in
percentage in weather dataset. Let F be the Finite feature along the probability to getting the
importance features along the differential space between weightage (Ω, F, P), where outcome
referred as Ω with finite feature occurrence F with a similar zed cluster weightage point space P.

Start

Read the dataset

 Find the dataset

Find features

For each overall dataset

For each pre-processing dataset

Verify irrelevant values

Assign mean value for null values

Stop

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 402

by the events referred P: F → [0, 1] weather features occurrence at weightage margin Wm(i j),
where i is the initialization feature and J is the relational feature.by the event occurrence of
feature in σ as affine state f(A). The algebraic function recommended as non-functional features
with closest weight by intersection theory of feature occurrence

F(Wm(i,j))  (3.8)

Where closest countable terms are µ: F → R at relevance measure, buy the exceptional
terms P (Ω, F)

P(Wm(i,j)) 

The probability of features points P get the consequences of weightage measure between
the features closet to µ (Ω) = 1, In all cases, the intersections are the occurrence of marginal
relevance obtained from probability measure P(f).

Input: A = {Ax}, the set of all Dataset (n)
Output: B = {Bx,y}, A collection of features in a dataset, row vector features of the original data.
Step 1: Initiate
Step 2: Using ASFWA  for extracting the features in the original data set
 For x= 1 to n do
Decompile the Ax
 Generate the extracting feature f (151-bit) from Manifest
 Generate the SDP features a (3262-bit) from sources;
 End for
 For y = 1 to 151 do
 B x, y = a y;
 End for
 For y = 152 to 3413 do
 B x, y = f y;
 End for
Step 3: πa is usually frequencies of the training set:
 Π a= (No.of.sample class A)/Total of samples
Step 4: End procedure
 Where, ASFWA- Adaptive Linear Component Analysis, SDP- Software Defect
Features, n- Number of datasets, Ax – Input values, B x,y – features of row and section values is
utilized for the dataset investigation of the first data to remove the elements in light of this
calculation. It helps in eliminating the improper qualities and choosing the handling information
in the Defect programming dataset. The SDP guarantees that this interaction is an application
that utilizes the A way, so it can consolidate SDP with consents to make more agent and
exhaustive element extraction that mirrors the way of behaving of 3413 pieces (151 extricating
highlight capacities + 3262 SDP capacities), which is substantially less mind boggling and each
defect the discovery framework can likewise be produced for every application.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 403

3.3 Fuzzified Cluster Neural Network feature selection

 Analyses software defect features from software data using cluster approaches. Cluster
Neural Network feature selection approach is very helpful for examining significant
characteristics of clinical data. Data noise can be present in ANT datasets. Fuzzy neural network
can be used to examine variables in defects datasets. Fuzzified Cluster Neural Network feature
selection can assist in identifying the characteristics based on maximum threshold values for
selects the high relevant feature.

Convert fuzzy input data into fuzzy sets. Each feature in the data set is

represented by the membership function . Membership functions that are trapezoidal or

trigonal are popular choices. Convert the gynecological features in equation 1 into fuzzy sets.

 for

Where is the membership function for feature , and and are the

lower and upper bounds of the feature .

Establish a set of fuzzy rules that define how the features of the input and the output are related.

For example, if we have two features and , a fuzzy rule might look like:

 If is and is , then is

Where and are fuzzy sets corresponding to the features and , and J is the fuzzy
set for the output b.

To obtain fuzzy outputs, apply the fuzzy rules to the fuzzified input. The fuzzy rules are
combined in this step by using logical operations like min, max, etc. The output of each rule

can be computed as:

Restore the crisp value to the fuzzy output by applying defuzzification techniques. The
centroid approach is a popular technique that determines the combined fuzzy set's centre of
weight:

Where are the crisp output values corresponding to each rule .

Combine the results from the fuzzy inference system to create a regression model. The
fuzzified regression equation can be expressed as:

Where is the weight of the rule, often determined by the degree of membership:

For a simple example with two features and the fuzzified regression equation might look
like:

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 404

 This method works well for complicated ANT Software defect records with a wide
variety of data types. This flexibility guarantees thorough examination of various clinical
datasets. This method may improve patient outcomes and boost the effectiveness of risk and
prompt intervention through precise analysis of software defect aspects. In order to promote
better healthcare solutions and increase the accuracy, robustness, and usefulness of clinical data
analysis, FCNN approaches offer strong tools for analyzing important aspects of software
records.

 Figure 3 Flow chart of Feature Selection Model

 The working principle of feature selection model is presented in above Figure 3
The method selects set of features according to attribute weight and based on that the method
performs features selection to support plant selection.

3.2.5 Soft Max logical activation function (SMLAF)

The proposed model has been designed with soft max logical activation function which is
intended to measure forecasting feature rate and success rate based on which set of weathers are
sorted and ranked to produce result. To support weather forecasting, the neurons present in each
layer would measure weather forecasting feature rate value and Max success rate for various
weather conditions. As the traces are grouped under different weather class and there exist set of
patterns for each class of weather, using them the method computes the value of weather
forecasting feature rate for each successive class. Similarly, the method computes the value of
max success rate for each class of weather considered. Further, the method sorts the weather
forecasting, according to the max success rate value. Sorted values or forecast classes are
produced as recommendation.

Start

Read Selective features

Select subset of features

Compute attribute weight

For each feature

Select features according to weight

Stop

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 405

Pseudo Code of SMLAF Algorithm:

Given: weather Class set WDcs, Cluster C, Test Sample s

Obtain: Recommendation R

Start

 Fetch DCS, C

 For each Successive class dc

 Measure Software defect risk rate

 WFFR = (3.10)

 End

 Identify the class C with maximum WFFR.

 For each forecasting for class C

 Measure Max success rate SR = (3.11)

 End

 Recommendation = Sort the Max state according to success rate from weather data

Stop.

 The above pseudo code shows Feature Selection Model works to generate
recommendations. The method computes software defect risk rate and identifies the forecast
class with maximum value. Now with the forecast class, the method estimates max success rate
and ranked to produce recommendations.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 406

Figure 4 Flow chart of SMLAF Algorithm

 The working of proposed SMLAF algorithm is presented in Figure 4, which computes
WFFR and SR values towards various classes to generate recommendations to the user.

3.4 Classification using Generative Adversarial Transfer Learning (GATL)

 The Generative Adversarial Transfer Learning (GATL) has the adaptability for
calculating risk characterization. Compute the mass conventional transfer of neurons in a single
layer and apply one more brain contribution to the following layer nonlinear actuation
capacities can utilize weight nonlinear cooperation relying information estimate by the neuron.
The GATL for catagorising the risk level of SDP using the Adversarial layers

Start

Read DCS. C

Compute Feature weights Rate

 Compute SR

For each class

Sort classes and generate evalution

Stop

Identify class with max thresholds
values

For each class

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 407

Figure 5 GATL Architecture

 GATL, a completely embodied secret layer with input neurons, � secret neurons and n
yield neurons, and np patterns and q attributes, as shown in Figure 5.

 Consider a dataset that is fully integrated with a hidden layer of GATL, which includes a
combination of i input neurons, � hidden neurons, n output neurons, and � and np forms and q
attributes.

Step1: Given accuracy specific speeds are used and the GATL algorithm is used for personal
training and test data network training.

Step2: Featured data included (��, ��, �, tnet , F)

Step3: Use each hidden node to calculate the total net worth of all the forms in the database

Step4: Eliminate hidden neurons and calculate precision measurements for hidden neurons � if
�� ≤ 	, {1,2, … 10}

Step5: Re-train the current Network

Step6: Utilize the result mistake to ascertain the blunder signal for the layer before the result.

Step7: The third layer plays out an Adaptive Moment Evaluation (Adam) in light of the ID of
the malicious application and the normal exhibition of each vindictive programming discharge
because of the application.

Step8: If the classification rate of the network is less than acceptable, stop pruning; If not, go-

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 408

ahead 2.

To software defect data or unapproved admittance to private organizations, different
software defects are made for various purposes. Software programming that endeavours to
perform inductive trainings on the Processor is a creation database. It will recognize any
software defect identifies the datasets based on the software. Utilizing GATL with high detection
outlines in software defect structures for utilizing the risks.

Algorithm

Inputs: Training and testing data

Output: Determine the accuracy of the calculation

Step 1: Handle SRC= Nt Open File;

Step 2: Handle section Handle + NtCreatesection (Section Handle);

If (QueryAttributesFile>TF)

While (Stopping condition is not met) do

 Implement GATL training step for each data values

 GATLCalculating weights =

 Implement GATL to classify the testing data values

 =

End While

 End If

Return Accuracy

Step 3: End

 Where W-weight values, TF-Time Frequency, Analyzes the accuracy of classification
based on software defect detection and performs optimal values for training and analysis of test
data.

4. Result and discussion

 The proposed models towards software defect prediction has been implemented in python
and evaluated for its performance under various constraints. The methods are evaluated for their
performance in different parameters using ANT data set. Obtained results are compared with the
results of various other approaches in this section.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 409

Table 2 Details of Evaluation

Parameters Ratings

Framework Anaconda

Language used Python

Dataset name ANT software Dataset

Number records 5000

Number of attributes 23

Training 70%

Testing 30%

 The details of data set and features considered for the performance evaluation has been
presented in Table 6.1. According to this, the performance of the method has been measured over
different performance metrics.

4.2 Performance model

1. Accuracy:

 The performance of methods are measured for their classification accuracy. It has been
measured based on the number of true negative and true positive classification generated
correctly with the total number of classification performed. It has been measured as follows:

 (6.1)

2. False Ratio:

 The ratio of false classification produced by various approaches are measured and
presented in this part. The false ratio has been measured by computing number of false
classification made among number of classification performed.

 False Ratio = (6.2)

3. Time Complexity:

 The performance of methods is measured on the time complexity, which is done based on
the value of total time taken and number of features handled. It has been measured as follows:

Time complexity (Tc) = (6.3)

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 410

4. F-Measure:

 F-measure is a performance metric used to evaluate the accuracy of a classification
model. It is calculated using the model's precision and recall and provides a single score that
takes both false positives and false negatives into account.

 F-measure= (6.4)

Precision is the ratio of true positive predictions to the total number of positive
predictions, and recall is the ratio of true positive predictions to the total number of actual
positive instances.

5. Specificity:

 The specificity of any classification algorithm is measured according to the number of
true negative classification produced for number of true negative and false positive classification.
It has been measured as follows:

 (6.5)

Comparative analysis

 The comparison methods are No of iterations/Methods, HYDRA, KSSP, PMHMFT,
DGRNN, and SMAN2.

Table 3: Analysis on Classification Accuracy

Methods

/No of

records

Impact of Classification Accuracy in %

HYDRA KSSP PMHMFT DGRNN SMAN2 GATL

500 87.3 91.1 93.1 93.8 94.2 95.1

1000 89.5 92.2 93.6 94.2 95.8 95.9

1500 91.3 92.7 93.8 95.4 96.2 96.8

2000 92.1 92.5 94.2 95.6 96.9 97

2500 92.6 92.9 94.2 95.6 97.1 97.8

 The accuracy of classification made by various approaches at the availability of
different number of records in the data set has been measured and presented in Table 6.2. The
proposed MIFSM – S3-DNN has produced higher performance in classification than other
approaches.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 411

Figure 6: Analysis of Classification Accuracy

 Figure 6 describes the crop recommendation comparison of classification accuracy
performance. The proposed method performed better than others, achieving an accuracy of
97.8% for 2500 records. This was possible due to the proposed method's identification of fluid
growth and soil growth-centric analysis for crop recommendation. As a result, produce the high
performance than other methods.

Figure 7: Impact of F-measure performance

 The performance of various methods in terms of F-measure is analysed and compared
with the results of other methods. F-measure is a valuable metric for evaluating the overall
performance of a classification model, as it balances the trade-off between precision and recall.
The findings are presented in Figure 7. The proposed approach has demonstrated a better
performance than other existing approaches.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 412

Figure 8: Analysis on Time Complexity

 Figure 8 shows the comparison results of crop recommendation time complexity
performance. The proposed method performed better than others, achieving a time of 88ms for
2500 records. This was possible due to the proposed method's identification of fluid growth and
soil growth-centric analysis for crop recommendation. As a result, it took less time to achieve
complexity performance than other methods.

Figure 9 performance of sensitivity analysis

 Additionally, the sensitivity performance comparison result with different types of
records is illustrated in the figure 9. Sensitivity refers to the proportion of positive cases the
system correctly identifies. In crop recommendations, high sensitivity values indicate that the
proposed system effectively recommends suitable crops for planting based on conditions.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 413

Figure 10 Analysis on Specificity

 Figure 10 illustrates the comparison of specificity performance for crop
recommendation. Specificity measures the proportion of actual negative cases that the system
correctly identifies. In the context of crop recommendation, it indicates how well the system
avoids recommending unsuitable crops for a given set of conditions. A high specificity value
would mean the system effectively filters out crops that are unsuitable for planting.

Figure 11 performance of false classification

 False classification performance, in this case, refers to the rate at which the system
inaccurately categorizes crops as suitable or unsuitable for a particular set of conditions. It is
worth noting that the proposed in figure 11.

5. Conclusion

 Software Defect Prediction (SDP) is essential to software testing and quality assurance.
It has become even more fundamental in recent years, as the number of programs and software

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 414

products has also increased in size and complexity. Identifying defective ranges to rank software
risk levels and minimize testing costs. Models using two standard output metrics: defect count
and defect density as target variables. It also studied the effect of using imbalance learning and
feature selection using Adaptive Static Feature weights Analysis (ASFWA). The FCNN results of
the models showed that using defect count as the target variable produced higher scores and
more stable results. The use of imbalance learning has shown significant improvement in the
Average weight scores of the defect density results but less significant on the defect count
results. Finally, using feature selection with weighted score of the defect density metric while it
had no impact on defect count results. Thus, we conclude that using feature selection and
imbalance learning with significant results. GATL helps by ranking modules based on the defect
severity, which helps to direct focus and resources to the modules that need more testing.

Reference

1. Tang S., Huang S. Zheng V, E. Liu, C. Zong and Y. Ding, "A novel cross-project software
defect prediction algorithm based on transfer learning," in Tsinghua Science and
Technology, Vol. 27, no. 1, pp. 41-57, Feb. 2022.

2. Yuan X., Chen X.i and Mu Y. (2020), ‘ALTRA: Cross-Project Software Defect Prediction
via Active Learning and Tradaboost,’ in IEEE Access, Vol. 8, pp. 30037-30049.

3. Gong L., Jiang S. and Jiang L. (2019), ‘Tackling Class Imbalance Problem in Software
Defect Prediction Through Cluster-Based Over-Sampling with Filtering,’ in IEEE Access,
Vol. 7, pp. 145725-14573.

4. Chakraborty T., and Chakraborty A.K. (June 2021), ‘Hellinger Net: A Hybrid Imbalance
Learning Model to Improve Software Defect Prediction,’ in IEEE Transactions on
Reliability, Vol. 70, no. 2, pp. 481-494.

5. Pan, C.; Lu, M.; Xu, B.; Gao, H. An Improved CNN Model for Within-Project Software
Defect Prediction. Appl. Sci. 2019, 9, 2138. https://doi.org/10.3390/app9102138.

6. Zhang, Jie; Wu, Jiajing; Chen, Chuan; Zhang, Zibin; Lyu, Michael R. (2020), CDS: ‘A
Cross -Version Software Defect Prediction Model with Data Selection,’ IEEE Access, 8
110059–110072. Vol. 11, pp. 2318-2326.

7. Ali et al C., (2023), ‘Analysis of Feature Selection Methods in Software Defect
Prediction Models,’ in IEEE Access, Vol. 11, pp. 145954-145974.

8. Annisa., Riski , Rosiyadi, Didi , Riana, and Dwiza. (2020), ‘Improved point center
algorithm for K-Means clustering to increase software defect prediction’, International
Journal of Advances in Intelligent Informatics. 1, Vol. pp.328-339.

9. Bala Y.Z., Abdul Samat P. Sharif K. Y. and Manshor N. (2023), ‘Improving Cross-Project
Software Defect Prediction Method Through Transformation and Feature Selection
Approach,’ in IEEE Access, Vol. 11, pp. 2318-2326.

10. L. Qiao, X. Li, Q. Umer and P. Guo, "Deep learning-based software defect
prediction", Neurocomputing, vol. 385, pp. 100-110, 2020.

11. Bhat., N.A., Farooq N.A. S.U. (2023), ‘An empirical evaluation of defect prediction
approaches in within-project and cross-project context’, Software Qual J 31, PP. 917–
946. https://doi.org/10.1007/s11219-023-09615-7.

12. Chinenye O., Anyachebelu. K. T. Abdullahi. M. U. (2023). Software Defect Prediction
System Based on Decision Tree Algorithm. Asian Journal of Research in Computer
Science, 16(4), 32–48.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 415

13. Huang E., and Strigini L. (2023), ‘HEDF: A Method for Early Forecasting Software
Defects Based on Human Defect Mechanisms," in IEEE aAccess, Vol. 11, pp. 3626-3652,
doi: 10.1109/ACCESS.2023.3234490.

14. Karpagalingam Thirumoorthy., Jerold John Britto J. (2022), ‘A feature selection model
for software defect prediction using binary Rao optimization algorithm, Applied Soft
Computing,’ Vol 131, 109737, ISSN 1568-4946,
https://doi.org/10.1016/j.asoc.2022.109737.

15. A Iqbal and S. Aftab, "Prediction of Defect Prone Software Modules using MLP based
Ensemble Techniques", International Journal of Information Technology and Computer
Science, vol. 12, no. 3, pp. 26-31, 2020.

16. A A Saifan and L A. Abuwardih, Software DP Based on Feature Subset Selection and
Ensemble Classification, vol. 14, no. 2, pp. 213-228, 2020.

17. Lin J., and Lu L (2021),.’Semantic Feature Learning via Dual Sequences for Defect
Prediction,’ in IEEE Access, Vol. 9, pp. 13112-13124

18. Mehmood et al E., (2023), ‘A Novel Approach to Improve Software Defect Prediction
Accuracy Using Machine Learning,’ in IEEE Access, Vol. 11, pp. 63579-63597.

19. Miholca D.L., Tomescu V.I. and Czibula G. (2022), 'An In-Depth Analysis of the
Software Features’ Impact on the Performance of Deep Learning-Based Software Defect
Predictors,’ in IEEE Access, Vol. 10, pp. 64801-64818, doi:
10.1109/ACCESS.2022.3181995.

20. Majd, Amirabbas, et al. "SLDeep: Statement-level software defect prediction using deep-
learning model on static code features." Expert Systems with Applications 147 (2020):
113156.

21. Mehta, S., Patnaik, K.S. Improved prediction of software defects using ensemble
machine learning techniques. Neural Comput & Applic 33, 10551–10562 (2021).
https://doi.org/10.1007/s00521-021-05811-3.

22. O. A. Qasem, M. Akour and M. Alenezi, "The Influence of Deep Learning Algorithms
Factors in Software Fault Prediction," in IEEE Access, vol. 8, pp. 63945-63960, 2020,
doi: 10.1109/ACCESS.2020. 2985290.

23. Li, Zhen, et al. "Software defect prediction based on hybrid swarm intelligence and deep
learning." Computational Intelligence and Neuroscience 2021.1 (2021): 4997459.

24. Rathore S.S., Chouhan S.S. Jain D.K and Vachhani A.G. (June 2022), ‘Generative
Oversampling Methods for Handling Imbalanced Data in Software Fault Prediction,’ in
IEEE Transactions on Reliability, Vol. 71, no. 2, pp. 747-762.

25. Šikić L., Kurdija A.S. Vladimir K. and Šilić M. (2022), ‘Graph Neural Network for
Source Code Defect Prediction,’ in IEEE Access, Vol. 10, pp. 10402-10415

26. Tong, Haonan, Shihai Wang, and Guangling Li. (2020), ‘Credibility Based Imbalance
Boosting Method for Software Defect Proneness Prediction,’ Applied Sciences 10, no.
22: 8059.

27. H. Wang, W. Zhuang and X. Zhang, "Software Defect Prediction Based on Gated
Hierarchical LSTMs," in IEEE Transactions on Reliability, vol. 70, no. 2, pp. 711-727,
June 2021, doi: 10.1109/TR.2020.3047396.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 416

