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Abstract 

 Software defect prediction (SDP) plays a significant role in detecting the most likely 
defective software modules and optimizing the allocation of testing resources. In practice, 
though, project executives must not only identify defective modules, but also rank them in a 
specific order to optimize the resource allocation and minimize testing costs, especially for 
projects with limited resources. However, existing approaches face challenges in achieving 
reliable predictions. To address this, a novel approach is proposed the method is Fuzzified 
Cluster Neural Network feature selection with Generative Adversarial Transfer Learning 
(GATL). The proposed work includes four major phases: (a) pre-processing, (b) Feature 
Extraction and (b) deep learning-based SDP classification. Initial stage is we collected the 
dataset from standard repository and starting the pre-processing step is used for cleaning the data 
and transforming and normalizing the data for get original dataset. Second step is estimating the 
original data feature weightage values using Adaptive Static Feature weights Analysis (ASFWA) 
and third step is Fuzzified Cluster Neural Network feature selection is extracted features, the 
relevant ones are selected using the Fuzzified Cluster Neural Network feature selection. Finally, 
the SDP (decision making) is carried out using the optimized Generative Adversarial Transfer 
Learning (GATL) using to improve the model's prediction accuracy. The final detected outcome 
(predicting the defects ranking like high low and medium scores) is acquired from optimized 
GATL. The implementation has been performed using the Python software.  By using certain 
performance metrics such as Sensitivity, Accuracy, Precision, Specificity and MSE the proposed 
model’s performance is compared to that of existing models. The accuracy achieved for the 
proposed model. 

Keywords: Software defect prediction, deep learning, Feature weights, Python software, Cluster, 
fuzzy, neural Network. 

1. Introduction 

 Software Defect Prediction (SDP) technology is an effective tool for improving software 
system quality that has attracted much attention in recent years. With the increasing scale, the 
structure of a software system becomes increasingly complex. Software defects occur for several 
reasons, such as a misunderstanding of the software requirements, an ineffective development 
process, or a lack of software development experience—generally, defective software results in 
unanticipated economic losses to enterprises and even human-related costs [1]. If software 
defects can be found during the early stage of development, the software quality can be 
improved, and the related fees will be reduced. 
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SDP can construct models by mining version control systems and defect tracking 
systems, and then the constructed models can be used to predict defective modules in advance. 
Therefore, limited software quality assurance (SQA) resources can be reasonably allocated to 
these identified defective modules, effectively improving the quality of deployed software. 
However, a target project may sometimes be new or have a few labeled modules [2]. The most 
straightforward method is directly using the labeled modules in other projects to train the 
models. Machine learning algorithms trained on these class-imbalanced datasets may be biased 
towards non-defective instances and misclassify defective cases [3]. The prevalent methods for 
tackling class imbalance problems are sampling, cost-software defect, and ensemble learning 
methods. These over-sampling methods can improve classifiers to identify more instances in 
minority class, but at the same time they may lead to misclassify many instances in majority 
class. 

A wide range of statistical and machine learning models have been employed to predict 
defects in software modules [4]. However, the imbalanced nature of this type of SDP dataset is 
pivotal for the successful development of a defect prediction model. which has attracted a lot of 
attention from the industrial communities and academicians over the last three decades. It allows 
software engineers to allocate a limited workforce, time, and other resources to defect-prone 
modules through early defect prediction. It also plays a vital role in reducing software 
development costs and maintaining the high quality of software systems. 

The prediction results can assist developers in prioritizing their testing and de-defecting 
efforts. As a result, software defect prediction techniques, which predict the occurrence of 
defects, have been widely used to assist developers in prioritizing their testing and de-defecting 
efforts. However, the increasing complexity of modern software has elevated the importance of 
software reliability [5]. Building highly reliable software requires a considerable amount of 
testing and de-defecting. However, since budget and time are limited, these efforts must be 
prioritized for efficiency. 

 However, the performance of cross-project defect prediction is relatively low because of 
the distribution differences between the source and target projects. Furthermore, the software 
defect dataset used for cross-project defect prediction is characterized by high-dimensional 
features, some of which are irrelevant and contribute to low performance. However, the cost of 
software testing is almost half of the development cost [6]. Consequently, managing the available 
limited resources is paramount in a situation where resources are limited. However, in practice, 
for new projects or companies that lack local defect data repositories because of the cost of 
maintaining such repositories, it will be challenging to apply SDP. 

2. Literature Survey 

 Accordingly, they use data analysis and Machine Learning (ML) algorithms to selectively 
reduce data dimensionality associated with critical features in SPD [7], allowing energy to be 
focused on areas where power is needed, thereby playing an essential role in achieving the SDP 
objective. 

 They proposed a point-centering approach utilizing the K-means algorithm to address the 
issue of random centroid values in K-means. They employed software to forecast errors in 
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defective blocks to identify the optimal initial centroid value [8]. Nevertheless, the suggested 
approach does not yield ideal outcomes for arbitrarily selecting centroid points. 

They proposed a transformation and feature selection method to reduce distributional 
disparities and high-dimensional features in inter-item defect prediction [9]. However, source 
and target projects have different distributions, and cross-project defect estimates perform poorly. 

 A deep neural network (DNN) based model specifically created to forecast the number of 
defects is applied to the modeling data. Additionally, two well-known datasets will be used to 
assess the suggested approach [10]. Moreover, to effectively utilize the limited resources 
available to developers, it is imperative to automatically anticipate the number of errors in a 
software module. 

 They recommend using process metrics, source code churn rate, and source code metric 
entropy as predictor variables in future defect prediction studies. Furthermore, the cautious use 
of single metric methods as predictor variables is presented [11]. Previous defect metrics and 
other single-metric methods have performed poorly. 

 The novel described developing a comprehensive SDP method that uses decision tree-
based algorithms to enhance accuracy, feature selection, and evaluation metrics [12]. The offered 
method has led to significant losses, including financial loss, damage to a company's reputation, 
and, in extreme cases, loss of life. 

 They introduced Human Error-Based Defect Prediction (HEDF) by investigating the 
cognitive processes behind developer errors. Specify defects in early software development 
stages before coding to predict them accurately [13]. 

The proposed Multi-Criteria Decision-Making (MCDM) method utilizes defect 
prediction and feature selection rates to evaluate candidate solutions [14]. Nonetheless, in the 
software industry, early software defect prediction is vital. 

They proposed a Multi-Layer Perceptron (MLP) method based on an ensemble 
classification framework to predict defective software modules. After the first dimensional 
optimization, they implemented the MLP algorithm for classification with improved packaging 
technology integration [15]. 

Table:1 Deep Learning Based on Software Defect Prediction 

Author Year Technique Used Drawback Performance 

Evaluation 

Accuracy 

A A Saifan 
[16] 

2021 Support Vector 
Machine (SVM) 

The presence of 
software defects 
diminishes the quality 
and results in project 
failure. 

Area Under 
Curve (AUC) 

75% 

Lin J. [17] 2021 bi-directional long 
short-term 
memory 
(BiLSTM) 

The sequence of 
tokens alone is not 
sufficient to 
distinguish the tree 
structure of an abstract 

Recall, F-
measure, AUC, 
and Matthews 
Correlation 
Coefficient 

68% 
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syntax tree. (MCC) 
Mehmood 
[18] 

2023 Logistic 
Regression (LR), 
SVM 

It is crucial to connect 
software engineering 
and data mining. 

Accuracy 93.05% 

Miholca D.L 
[19] 

2022 artificial neural 
network (ANN) 

SDP is a challenging 
problem in the highly 
active field of 
analyzing large 
complex systems. 

Sensitivity, 
Specificity 

95% 

Majd, 
Amirabbas 
[20] 

2020 LSTM Poor quality software 
can result in 
significant financial 
costs. 

Sensitivity, 
Recall 

72% 

Mehta, S 
[21] 

2021 Recursive Feature 
Elimination (RFE) 

The testing process is 
vital in software 
development 

Precision, F-
Measure 

93% 

O. A. Qasem 
[22] 

2020 MLP, 
Convolutional 
Neural Network 
(CNN) 

Poor quality due to 
software defects. 

Sensitivity, 
Accuracy 

89% 

Li, Zhen [23] 2021 particle swarm 
and the wolf 
swarm algorithm 

Timely elimination of 
software defects is 
crucial to avoid severe 
financial losses. 

Recall rate, 
Precision 

76% 

Rathore S.S 
[24] 

2022 generative 
adversarial 
network (GAN)   

Software practitioners 
face a challenge in 
managing asymmetric 
error data. 

Recall, F1-
score, 

79% 

Šikić L [25] 2022 Graph 
Convolutional 
Neural Network 
(GCNN) 

Attention to a small 
part of the code 
because the source 
code ignores its tree 
structure. 

F-score 81% 

Tong [26] 2020 credibility-based 
imbalance 
boosting (CIB) 

Categorizing software 
defects as either 
defective or non-
defective complicates 
predicting them. 

AUC, MCC 87.6% 

 

They proposed a deficit prediction model based on a Gated Hierarchical Long-Short-Term 
Memory (GH-LSTM) network to extract semantic features from word embedding structures 
[27]. However, they may need to correct feature defects such as lines of code. 
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 They are analyzing software metrics and predicting defects using an automated tool 
called GraphEvoDef. The evolution of software is described, and recent comparative 
developments in networking are analyzed [28]. 

 Recent experiments have shown that semantic features based on Deep Belief Network 
(DBN) technology can significantly enhance defect prediction tasks. Furthermore, when 
comparing semantic features to traditional features, the improvement in file-level project defect 
prediction ranges from 2.1 to 41.9 percentage points [29]. 

 The outcome demonstrates that structural information from software networks 
considerably impacts CNN techniques, and the performance improves when paired with 
semantic features. Additionally, the F-measure often rises with a maximum growth rate of 92.5% 
compared to traditional structural features [30]. 

3. Proposed method 

 Recently, ML techniques are being highly applied for automated SDP.  These approaches 
require reduce computation time and reduce manually extracted features. DL approaches enable 
practitioners to automatically extract and learn from more complicated and high-dimensional 
data. Therefore, in this research work, a novel GATL-based SDP model is introduced. The 
proposed work includes  the  following  phases:“(a)  pre-processing,  (b) Feature  selection  and  
(c) classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 1: Proposed Diagram   

 Figure 1 described as, Purposed diagram for software defect prediction using deep 
learning based GATL for predicting the rosily (Risk level),the proposed method include 
preprocessing to reduce null values and cleaning the data second step is to get preprocessed data 
evaluating the feature maximum and minimum weights using Adaptive Static Feature weights 
Analysis ,third step is feature selection based on the maximum threshold values using for 

ANT S/w 
dataset  

Preprocessing stage 

Data cleaning and 
data 

Feature weight 
evaluation 

Adaptive Static Feature weights Selecting the features 

Fuzzified Cluster 
Neural Network 

Selects the high relevant feature  

Generative Adversarial Transfer Learning (GATL) 

Predicting Result 
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evaluating the high relevant features based on fuzzified cluster neural network. Finally 
classification using GATL is predicting the result based on the risk factors. 

 

3.1 Data Preprocessing 

 Initially, the collected raw data is pre-processed via data cleaning and Decimal scaling 
normalization approach. Since datasets frequently values, contain missing noise, and noticeable 
changes in the size of the features, data pre-processing is frequently done before training ML 
models. The following pre-processing steps have been used for the ANT software dataset. 

Data cleaning -Missing Data Removal (MDR) 

 The term "missing data" refers to information that is not recorded for a variable for 
particular observation. Missing data lowers the analysis’s statistical power, which might skew the 
conclusions' validity. To prevent bias when dealing with missing data at random, relevant data 
may be eliminated. If there aren't enough observations to perform a reliable analysis, data 
removal may not be the best solution. In some cases, it may be vital to keep a watch on specific 
things 

Given:  ANT Software defect dataset 

Obtain: preprocessed dataset   

Begin 

Read sdf data.  

        Generate software defect dataset sdfd1, d2, d3 + pd (Index +1) 

   Find features of sdf 

 For each preprocessed data (Pd) 

  If  Pd contains all then 

  Ok 

  Else 

  Remove null values 

             End  

  For each feature f 

 If value is null then 

F = fill with near average value. 

 End 

 End 

 Add sdf to Pd. 
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 End 

 Stop 

 The working of preprocessing algorithm is presented in the above pseudo code, which 
finds the records with missing features which has been removed from the data set where the trace 
with value missing are replaced with near mean value of the feature. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Flow chart of Data Preprocessing 

 The flow chart of data preprocessing is presented in Figure 2. Where the method read 
the trace and remove the noisy records and assigns null value with mean near value to support 
the feature weights process. 
3.2 Feature weights evaluation using  

To obtain the features from more number of attribute cases and initially they count 
reframes to reduce the dimension along the reduction. Secondly, to construct feature importance 
weightage by marginal acceptance of varying margins of a feature importance. The Dominant 
features weightage from weather dataset by retaining the Probability to getting the features in 
percentage in weather dataset. Let F be the Finite feature along the probability to getting the 
importance features along the differential space between weightage (Ω, F, P), where outcome 
referred as Ω with finite feature occurrence F with a similar zed cluster weightage point space P. 

Start 

Read the dataset 

  Find the dataset 

Find features 

For each overall dataset 

For each pre-processing dataset 

Verify irrelevant values 

Assign mean value for null values 

Stop 
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by the events referred P: F → [0, 1] weather features occurrence at weightage margin Wm(i j), 
where i is the initialization feature and J is the relational feature.by the event occurrence of 
feature in σ  as affine state f(A). The algebraic function recommended as non-functional features 
with closest weight by intersection theory of feature occurrence 

F(Wm(i,j))    (3.8) 

Where closest countable terms are µ: F → R at relevance measure, buy the exceptional 
terms P (Ω, F)  

P(Wm(i,j))       

The probability of features points P get the consequences of weightage measure between 
the features closet to µ (Ω) = 1, In all cases, the intersections are the occurrence of marginal 
relevance obtained from probability measure P(f). 

Input: A = {Ax}, the set of all Dataset (n) 
Output: B = {Bx,y}, A collection of features in a dataset, row vector features of the original data. 
Step 1: Initiate 
Step 2: Using ASFWA  for extracting the features in the original data set 
              For x= 1 to n do 
Decompile the Ax 
 Generate the extracting feature f (151-bit) from Manifest 
                                   Generate the SDP features a (3262-bit) from sources; 
                  End for 
          For y = 1 to 151 do 
 B x, y = a y; 
           End for 
                          For y = 152 to 3413 do 
 B x, y = f y; 
             End for 
Step 3: πa is usually frequencies of the training set: 
 Π a= (No.of.sample class A)/Total of samples    
Step 4: End procedure 
               Where, ASFWA- Adaptive Linear Component Analysis, SDP- Software Defect 
Features, n- Number of datasets, Ax – Input values, B x,y – features of row and section values is 
utilized for the dataset investigation of the first data to remove the elements in light of this 
calculation. It helps in eliminating the improper qualities and choosing the handling information 
in the Defect programming dataset. The SDP guarantees that this interaction is an application 
that utilizes the A way, so it can consolidate SDP with consents to make more agent and 
exhaustive element extraction that mirrors the way of behaving of 3413 pieces (151 extricating 
highlight capacities + 3262 SDP capacities), which is substantially less mind boggling and each 
defect the discovery framework can likewise be produced for every application. 
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3.3 Fuzzified Cluster Neural Network feature selection 

 Analyses software defect features from software data using cluster approaches. Cluster 
Neural Network feature selection approach is very helpful for examining significant 
characteristics of clinical data. Data noise can be present in ANT datasets. Fuzzy neural network 
can be used to examine variables in defects datasets. Fuzzified Cluster Neural Network feature 
selection can assist in identifying the characteristics based on maximum threshold values for 
selects the high relevant feature. 

Convert fuzzy input data  into fuzzy sets. Each feature in the data set  is 

represented by the membership function . Membership functions that are trapezoidal or 

trigonal are popular choices. Convert the gynecological features in equation 1 into fuzzy sets. 

  for                                                                                            

Where  is the membership function for feature , and  and  are the 

lower and upper bounds of the feature  . 

Establish a set of fuzzy rules that define how the features of the input and the output are related. 

For example, if we have two features  and , a fuzzy rule might look like: 

 If  is  and is , then  is  

Where  and  are fuzzy sets corresponding to the features  and , and J is the fuzzy 
set for the output b. 

To obtain fuzzy outputs, apply the fuzzy rules to the fuzzified input. The fuzzy rules are 
combined in this step by using logical operations like min, max, etc. The output of each rule   

can be computed as: 

                                                                                              

Restore the crisp value to the fuzzy output by applying defuzzification techniques. The 
centroid approach is a popular technique that determines the combined fuzzy set's centre of 
weight: 

                                                                                                                      

Where  are the crisp output values corresponding to each rule . 

Combine the results from the fuzzy inference system to create a regression model. The 
fuzzified regression equation can be expressed as: 

                                                                                                                      

Where  is the weight of the  rule, often determined by the degree of membership: 

                                                                                                                              

For a simple example with two features  and  the fuzzified regression equation might look 
like: 
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   This method works well for complicated ANT Software defect records with a wide 
variety of data types. This flexibility guarantees thorough examination of various clinical 
datasets. This method may improve patient outcomes and boost the effectiveness of   risk and 
prompt intervention through precise analysis of software defect aspects. In order to promote 
better healthcare solutions and increase the accuracy, robustness, and usefulness of clinical data 
analysis, FCNN approaches offer strong tools for analyzing important aspects of software 
records. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 3 Flow chart of Feature Selection Model 

 The working principle of feature selection model is presented in above Figure 3 
The method selects set of features according to attribute weight and based on that the method 
performs features selection to support plant selection. 

3.2.5 Soft Max logical activation function (SMLAF) 

The proposed model has been designed with soft max logical activation function which is 
intended to measure forecasting feature rate and success rate based on which set of weathers are 
sorted and ranked to produce result. To support weather forecasting, the neurons present in each 
layer would measure weather forecasting feature rate value and Max success rate for various 
weather conditions. As the traces are grouped under different weather class and there exist set of 
patterns for each class of weather, using them the method computes the value of weather 
forecasting feature rate for each successive class. Similarly, the method computes the value of 
max success rate for each class of weather considered. Further, the method sorts the weather 
forecasting, according to the max success rate value. Sorted values or forecast classes are 
produced as recommendation.   

Start 

Read Selective features 

Select subset of features  

Compute attribute weight 

For each feature 

Select features according to weight 

Stop 
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Pseudo Code of SMLAF Algorithm: 

Given: weather Class set WDcs, Cluster C, Test Sample s 

Obtain: Recommendation R 

Start 

 Fetch DCS, C 

 For each Successive class dc 

  Measure Software defect risk rate 

  WFFR =  (3.10) 

 End 

 Identify the class C with maximum WFFR. 

 For each forecasting for class C 

  Measure Max success rate SR = (3.11) 

 End 

 Recommendation = Sort the Max state according to success rate from weather data 

Stop. 

  The above pseudo code shows Feature Selection Model works to generate 
recommendations. The method computes software defect risk rate and identifies the forecast 
class with maximum value. Now with the forecast class, the method estimates max success rate 
and ranked to produce recommendations.  

 

 

 

 

 

 

 

 

 

 

 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 406



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Flow chart of SMLAF Algorithm 

 The working of proposed SMLAF algorithm is presented in Figure 4, which computes 
WFFR and SR values towards various classes to generate recommendations to the user. 

3.4 Classification using Generative Adversarial Transfer Learning (GATL) 

 The Generative Adversarial Transfer Learning (GATL) has the adaptability for 
calculating risk characterization. Compute the mass conventional transfer of neurons in a single 
layer and apply one more brain contribution to the following layer nonlinear actuation 
capacities can utilize weight nonlinear cooperation relying information estimate by the neuron.  
The GATL for catagorising the risk level of SDP using the Adversarial layers 

Start 

Read DCS. C 

Compute Feature weights Rate 

 Compute SR 

For each class 

Sort classes and generate evalution 

Stop 

Identify class with max thresholds 
values   

For each class 
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Figure 5 GATL Architecture 

  GATL, a completely embodied secret layer with input neurons, � secret neurons and n 
yield neurons, and np patterns and q attributes, as shown in Figure 5. 

  Consider a dataset that is fully integrated with a hidden layer of GATL, which includes a 
combination of i input neurons, � hidden neurons, n output neurons, and � and np forms and q 
attributes. 

Step1: Given accuracy specific speeds are used and the GATL algorithm is used for personal 
training and test data network training. 

Step2: Featured data included (��, ��, �, tnet , F) 

Step3: Use each hidden node to calculate the total net worth of all the forms in the database 

 

Step4: Eliminate hidden neurons and calculate precision measurements for hidden neurons � if 
�� ≤ 	, {1,2, … 10} 

Step5: Re-train the current Network 

Step6: Utilize the result mistake to ascertain the blunder signal for the layer before the result. 

Step7: The third layer plays out an Adaptive Moment Evaluation (Adam) in light of the ID of 
the malicious application and the normal exhibition of each vindictive programming discharge 
because of the application. 

 

Step8: If the classification rate of the network is less than acceptable, stop pruning; If not, go-
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ahead 2.  

To software defect data or unapproved admittance to private organizations, different 
software defects are made for various purposes. Software programming that endeavours to 
perform inductive trainings on the Processor is a creation database. It will recognize any 
software defect identifies the datasets based on the software. Utilizing GATL with high detection 
outlines in software defect  structures for utilizing the risks.  

Algorithm  

Inputs:  Training and testing data 

Output: Determine the accuracy of the calculation 

Step 1: Handle SRC= Nt Open File; 

Step 2: Handle section Handle + NtCreatesection (Section Handle); 

If (QueryAttributesFile>TF) 

While (Stopping condition is not met) do 

 Implement GATL training step for each data values 

            GATLCalculating weights  =    

                                 Implement GATL to classify the testing data values 

 =  

End While 

 End If 

Return Accuracy 

Step 3: End 

            Where W-weight values, TF-Time Frequency, Analyzes the accuracy of classification 
based on software defect detection and performs optimal values for training and analysis of test 
data. 

4. Result and discussion 

  The proposed models towards software defect prediction has been implemented in python 
and evaluated for its performance under various constraints.  The methods are evaluated for their 
performance in different parameters using ANT data set. Obtained results are compared with the 
results of various other approaches in this section.  
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Table 2 Details of Evaluation 

Parameters Ratings  

Framework Anaconda 

Language used Python 

Dataset name ANT software Dataset 

Number records 5000 

Number of attributes 23 

Training 70% 

Testing 30% 

 The details of data set and features considered for the performance evaluation has been 
presented in Table 6.1. According to this, the performance of the method has been measured over 
different performance metrics.  

4.2 Performance model 

1. Accuracy: 

 The performance of methods are measured for their classification accuracy. It has been 
measured based on the number of true negative and true positive classification generated 
correctly with the total number of classification performed. It has been measured as follows:  

        (6.1) 

 

 

2. False Ratio: 

 The ratio of false classification produced by various approaches are measured and 
presented in this part. The false ratio has been measured by computing number of false 
classification made among number of classification performed. 

 False Ratio =      (6.2) 

3. Time Complexity: 

 The performance of methods is measured on the time complexity, which is done based on 
the value of total time taken and number of features handled. It has been measured as follows: 

Time complexity (Tc) =   (6.3)  
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4. F-Measure: 

 F-measure is a performance metric used to evaluate the accuracy of a classification 
model. It is calculated using the model's precision and recall and provides a single score that 
takes both false positives and false negatives into account. 

  F-measure=   (6.4) 

Precision is the ratio of true positive predictions to the total number of positive 
predictions, and recall is the ratio of true positive predictions to the total number of actual 
positive instances. 

5. Specificity: 

 The specificity of any classification algorithm is measured according to the number of 
true negative classification produced for number of true negative and false positive classification. 
It has been measured as follows: 

           (6.5) 

 

Comparative analysis 

 The comparison methods are No of iterations/Methods, HYDRA, KSSP, PMHMFT, 
DGRNN, and SMAN2.  

Table 3: Analysis on Classification Accuracy 

Methods 

/No of  

records 

Impact of Classification Accuracy in % 

HYDRA KSSP PMHMFT DGRNN SMAN2 GATL 

500 87.3 91.1 93.1 93.8 94.2 95.1 

1000 89.5 92.2 93.6 94.2 95.8 95.9 

1500 91.3 92.7 93.8 95.4 96.2 96.8 

2000 92.1 92.5 94.2 95.6 96.9 97 

2500 92.6 92.9 94.2 95.6 97.1 97.8 

  The accuracy of classification made by various approaches at the availability of 
different number of records in the data set has been measured and presented in Table 6.2. The 
proposed MIFSM – S3-DNN has produced higher performance in classification than other 
approaches.  
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Figure 6: Analysis of Classification Accuracy 

 Figure 6 describes the crop recommendation comparison of classification accuracy 
performance. The proposed method performed better than others, achieving an accuracy of 
97.8% for 2500 records. This was possible due to the proposed method's identification of fluid 
growth and soil growth-centric analysis for crop recommendation. As a result, produce the high 
performance than other methods. 

 

Figure 7: Impact of F-measure performance 

 The performance of various methods in terms of F-measure is analysed and compared 
with the results of other methods. F-measure is a valuable metric for evaluating the overall 
performance of a classification model, as it balances the trade-off between precision and recall. 
The findings are presented in Figure 7. The proposed approach has demonstrated a better 
performance than other existing approaches.   
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Figure 8: Analysis on Time Complexity 

 Figure 8 shows the comparison results of crop recommendation time complexity 
performance. The proposed method performed better than others, achieving a time of 88ms for 
2500 records. This was possible due to the proposed method's identification of fluid growth and 
soil growth-centric analysis for crop recommendation. As a result, it took less time to achieve 
complexity performance than other methods.   

   

 
Figure 9 performance of sensitivity analysis 

 Additionally, the sensitivity performance comparison result with different types of 
records is illustrated in the figure 9. Sensitivity refers to the proportion of positive cases the 
system correctly identifies. In crop recommendations, high sensitivity values indicate that the 
proposed system effectively recommends suitable crops for planting based on conditions.  
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Figure 10 Analysis on Specificity 

 Figure 10 illustrates the comparison of specificity performance for crop 
recommendation. Specificity measures the proportion of actual negative cases that the system 
correctly identifies. In the context of crop recommendation, it indicates how well the system 
avoids recommending unsuitable crops for a given set of conditions. A high specificity value 
would mean the system effectively filters out crops that are unsuitable for planting.   
 

  
Figure 11 performance of false classification 

 False classification performance, in this case, refers to the rate at which the system 
inaccurately categorizes crops as suitable or unsuitable for a particular set of conditions. It is 
worth noting that the proposed in figure 11. 

5. Conclusion 

 Software Defect Prediction (SDP) is essential to software testing and quality assurance. 
It has become even more fundamental in recent years, as the number of programs and software 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 34 ISSUE 7 2024

Page No: 414



products has also increased in size and complexity. Identifying defective ranges to rank software 
risk levels and minimize testing costs. Models using two standard output metrics: defect count 
and defect density as target variables. It also studied the effect of using imbalance learning and 
feature selection using Adaptive Static Feature weights Analysis (ASFWA). The FCNN results of 
the models showed that using defect count as the target variable produced higher scores and 
more stable results. The use of imbalance learning has shown significant improvement in the 
Average weight scores of the defect density results but less significant on the defect count 
results. Finally, using feature selection with weighted score of the defect density metric while it 
had no impact on defect count results. Thus, we conclude that using feature selection and 
imbalance learning with significant results. GATL helps by ranking modules based on the defect 
severity, which helps to direct focus and resources to the modules that need more testing. 
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