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Abstract— Fetal heart rate (FHR) is an essential parameter for 

long-term prenatal monitoring of intrauterine fetal health. FHR, 

if measured correctly, can help reduce incidences of miscarriage 

and infant mortality and detect potential heart problems before 

delivery. The present study aims to create an automatic fetal heart 

rate diagnosis system. A novel technique is used to predict the 

fetus’s health using raw audio signals acquired from an electronic 

stethoscope. Adaptive bandpass filtering based on extracted 

Continuous Wavelet Transform (CWT) coefficients is used to filter 

the input signals. The filtered signal is used to extract features such 

as pitch frequency, beats per minute (BPM), recurrent 

quantification analysis (RQA) features, and chroma vector to 

generate a suitable data set that trains a Gradient Boosting 

Classifier. Our proposed system shows improved results from 

existing FHR classification techniques and performs with an 

accuracy of 94.3%. This technique shall assist the doctor and 

health care workers in monitoring fetal health regularly and 

taking timely action in case of an aberration. 

 
Index Terms— Fetal Heart Rate, Shannon entropy, Gradient 

Boosting, Recurrence Quantification Analysis, Phonocardiogram 

signals, Adaptive Bandpass Filtering  

 

I. INTRODUCTION 

 
Fetal heart rate assessment is the key to understand the fetus's 

health during or before labor. It is reported that around 3 million 

fetal deaths occur worldwide every year. The precise diagnosis 

of at-risk pregnancies can significantly prevent fetal deaths. 

Fetal Monitoring systems help to reduce the mortality rate 

substantially this system are commonly known as Electronic 

Fetal Monitoring EFM. EFM was first introduced at Yale 

University USA in 1958 [2]. Since then, EFM has been the most 

shared obstetric practice during labor. 

 

The EFM involves Cardiotocography (CTG), which monitors 

and measures the fetal heart rate and mother's contractions 

during labor with an ultrasound machine and a pressure sensor. 

CTG consists of the intrauterine pressure (IUP) and fetal 

electrocardiogram (FECG) signals to measure uterine 

contraction and FHR. The signals sent from these sensors are 

displayed on the computer screen, often known as EFM 

tracings, and the changes in uterine contractions on standard 

fetal heart rate are observed precisely. The autocorrelation 

method [3] is the most used approach for the FHR analysis in 

CTG monitoring. EFM generates various graphs which helps 

predominantly in graphical analysis of FHR patterns [4]. Due 

to the introduction of CTG monitoring, the extent of birth 

asphyxia has been reduced immensely. On the contrary, it has 

also contributed to the drift of the cesarean section [5]. The rise 

in the cesarean section has resulted from a poor understanding 

of CTG signals' correspondence with fetal behavior. New 

policies by the NICHD (National Institute of Child Health and 

Human Development) were introduced for CTG monitoring to 

enhance the interpretations of CTG signals and decline the rate 

of acidosis and cesarean sections [6]. Regardless of the 

policies[7], the poor rendition of CTG persists. 

 

Among all the monitoring techniques, Fetal Phonocardiography 

(FPCG) possesses the least harm to the antepartum (before 

childbirth) and intrapartum (during labor) care. A fetal 

phonocardiogram records the fetal heart sounds (FHS) 

produced by different cardiac chambers for pulsating and 

moving blood throughout the cardiac cycle [8]. Previous FPCG 

based FHR classification methods are primarily dependent on 

the calculation of time difference between detected successive 

heart beats. However, their performance stands low due to 

inadequate sound quality in low signal and noisy areas [9]. 

 

We propose a novel technique for the FHR classification from 

FPCG. Firstly, our proposed system aims at removing noise and 

sporadic interferences that mix with the signal audio during 

recording. The resultant signal is cleaned and denoised enough 

to extract the fetal heartbeat signal. The fetal heartbeat is 

extracted using peak detection and beat localization by adding 

a de-bounding condition. The frequency contents, spectral 

features of the cleaned fetal heart signal, and corresponding 

beats per minute (numeric value) of various subjects serve as a 

data set. The data set is pre-processed and used to train a 

classifier for predicting the fetal health. Section II gives the 

overview of the related work done in this area of FHR 

monitoring. Section III describes the database used in this 

research. Section IV elaborates on our proposed system with 

flow diagram and detail explanation. The filtering and feature 

extraction processes are discussed in section V. Section VI 

explains feature selection, hyperparameter tuning process and 

compares the performance of different machine learning 

classifiers. Sections VII highlights the performance of the 

selected classifier on the relevant classification metrics. In 

section VIII we conclude and discuss the possible 

advancements in this research. 
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II. LITERATURE REVIEW 

The significant step in FHR classification is identifying notable 

features from the FHR-IUP signals that can accurately detect 

the unique FHR patterns. In [10], V. Chuda Cek provides a 

thorough study of such important features for FHR analysis. 

These features consist of morphological features [11], linear 

features such as mean and variance, and nonlinear features, for 

example, fractal dimension (FD) [12], power spectral density 

estimates [13]. In [14], P. A. Warrick et al. focus on the 

dynamic relationship between the IUP and FHR signals. Using 

a system identification method to evaluate the dynamic 

relationship as an impulse response function. For FPCG 

filtering, wavelet-based approaches have been proposed due to 

their adaptable and efficient nature. Chourasia and Tiwari [15] 

designed a new adaptable and robust wavelet basis function for 

Discrete Wavelet Transform based FPCG denoising. In their 

studies, the newly developed Mother Wavelet provided better 

results in FPCG denoising. Koutsiana et al. [16] used a Fractal 

Dimension (FD) analysis in the wavelet domain to remove 

background noise from various simulated fetal heart recordings. 

While this approach shows promising results, it remains 

untested on actual recordings. In [17], Kovacs et al. suggested 

an acoustic method for real-time and long-term fetal heart 

monitoring using a portable electronic device that underwent 

testing in clinical practice. However, due to the limitations of 

the acoustic approach, it becomes impossible to extract FHR 

information from certain sections of the recording. A 

comprehensive approach for FHR classification mentioned in 

[18], Dash et al. uses generative models and Bayesian theory 

for FHR classification. The rule-based machine learning 

classifiers for FHR classification have been discussed in [9] and 

neural networks [19]. In [20], V. Chuda Cek proposed a 

machine learning approach for FHR classification approach 

using PCA (principal component analysis) followed by a direct 

correlation of important feature sets with fetal heart rate. The 

feature-based FHR classification using machine learning is 

mentioned in Akhil Masurkar et al. [21], uses a Shannon energy 

envelope-based beat localization algorithm and other prime 

factors in pregnancy for FHR classification. 

 

III. DATA SET 

 

The fetal heart sound database acquired by Shiraz University 

(SU) [22] is used in this research. The database includes fetal 

heart sound recordings from 109 pregnant women recorded 

with an electronic stethoscope. It consists of 119 recordings 

with a 16,000 Hz sampling rate and a few at 44,100 Hz and 16-

bit quantization. The data set is unevenly distributed within two 

classes with distribution split of 75% for Normal and 25% for 

Abnormal class. Originally the average duration of each sample 

was around 90 seconds. We clipped the audio files into 10 

seconds, generating 7 to 9 new samples from each previous 

recording. Generate a total of 862 samples of 10 seconds each 

after clipping the audio files from the original database. 

IV. PROPOSED SYSTEM 

 

The proposed system is based upon phonocardiography for fetal 

health monitoring. Once the phonocardiogram signal serves as 

the input to the system, it is subjected to filtering, i.e., It is 

denoised using continuous wavelet transform (CWT) and an 

adaptive bandpass filtering (BPF). Once the fetal heart audio 

signal is filtered, our system generates 20 features using pre-

processing techniques. The signal goes through feature 

extraction processes such as Beats per Minute localization, 

Recurrent Quantification Analysis, chroma features, and 

frequency contents. Once features are established, they are used 

for classification, using Gradient Boosting Classifier (GBC) to 

predict on any new data based on existing data trends and 

tendencies. Fig 1. Show the  flowchart of our proposed system.

 

     

 
 

Fig 1.   Shows the flow chart of our proposed system 
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V. METHODOLOGY 

 

This section describes the specific procedures involved in the 

proposed FHR classification technique. It illustrates the basic 

principles of the techniques used for the feature extraction 

process, such as Signal filtering, Shannon energy envelope-

based beat localization, RQA, Chroma vector, and Beat Per 

Minutes. The flow diagram of the proposal is shown in Fig 1. 

 

A. Signal Analysis 

 

Continuous wavelet transform (CWT) is used to design the 

filtering algorithm. The Analytical Morlet (Gabor) wavelet is 

selected due to its morphological resemblance to a fetal 

heartbeat. A discretized version of CWT is used to increase 

computational speed. The magnitude scalogram below shows 

that the scales corresponding to 250-500 Hertz have the most 

signal energy, correlating to the heartbeats. Any other 

frequency scale corresponds to the unwanted sporadic 

occurrences in the signal magnitude (noise). 

 

   
Fig 2. Shows comparison of sample f72_1 and its CWT Magnitude 

Scalogram 

 

The frequency range for the desired audio of each signal is 

calculated using CWT coefficients. The scale magnitude of 

every sample in time is extracted. Next, a smooth curve is 

obtained by point-wise summation of scale parameters for 

every discrete signal sample and then interpolating the values. 

 

 
Fig 3. Shows the comparison of the sum of Magnitudes of CWT 

Coefficients for Samples f72_1, f56_1, f20_1  

 

From figure 3, it is evidential that the spread of the curve for 

each signal is different. The peak magnitude and the frequency 

at which the peak occurs also vary for each signal. Having fixed 

filter parameters to clean every data sample may lead to a 

compromised signal-to-noise ratio (SNR), resulting in improper 

segmentation and classification. 

 

B. Extracting Filter Parameters 

 

The curves obtained using CWT coefficient are normalized to 

compensate for the varying nature of each recording, then a 

threshold is selected at 30% of the peak magnitude. The point 

when magnitude equals the threshold gives the upper and lower 

cut-off frequencies for the filter, shown in fig. 4 below. A Finite 

Impulse Response (FIR) filter is selected for its linear phase 

response in the pass band and constant group delay. An 

attenuation of 1 decibel is set for the pass band and 120 decibels 

for both the stop bands. 

 
Fig 4. Shows the selection of Cut-off Frequencies for sample f72_1 

after normalization and thresholding 
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C. Shannon Energy Envelope-Based Beat Localization 

 

The attribute beats per minute (BPM) is extracted using 

Shannon Energy Envelope (SEE) based beat localization. This 

algorithm involves detecting the upper peaks of the filtered 

FHR signal. Shannon energy (SE) calculates the energy of the 

local spectrum for each sample present in the signal. It is 

evaluated by using equation (1) 

 

                          𝑆𝐸 = −𝑋2[𝑛] ∗𝑙𝑜𝑔 𝑙𝑜𝑔(𝑋2[𝑛])                       (1) 

 

Comparing different enveloping methods [23], Fig. 5 shows 

that using classic energy will attenuate sounds having lower 

magnitude much more than it attenuates the higher magnitude 

sounds (comparatively negligible). This increases the ratio of 

high-to-low intensities in the signal. Shannon entropy amplifies 

the intensities of lower amplitude sounds, thus increasing the 

effect of low amplitude noise, making the signal envelope too 

noisy to read. 

Fig 5. Shows the comparison of Different Envelope Methods 
 

Signal energy is approximately equal to the square of the 

signal data 𝑥(𝑛). Hence, the signal energy of a discrete-time 

signal will be as given in equation (2) 

 

                                         𝐸𝑥 =  ∑|𝑥(𝑛)|2

∞

−∞

                                  (2) 

 

Shannon energy calculates the mean spectrum of the signal, 

creating a frequency-dependent regulation that directly relates 

to the Fourier spectrum [24]. It contributes to the suppression 

of higher and lower intensities of the signal, and the magnitudes 

between the higher and lower amplitudes are made consistent. 

Hence, any abrupt, loud, or dull noises are suppressed, keeping 

the amplitudes in the middle region, where most of the vital 

signal lies, less attenuated. This helps in better detection of the 

desired signal peaks. The algorithm calculates the Shannon 

energy (SE) of the entire signal, and then the Shannon energy 

envelope is determined through spline interpolation over local 

maxima. The beats are localized using a predefined threshold 

over the Shannon energy (SE) envelope. A debounce condition 

is deployed to further minimize the errors caused by false peaks 

in the beat localization process. Results of the beat localization 

process are displayed in figure 6 below. Once the beats have 

been localized, the final beats per minute value can be 

calculated using the equation (3) 

 

    𝐵𝑃𝑀 =
𝑇𝑜𝑡𝑎𝑙 𝐵𝑒𝑎𝑡𝑠 ∗ 𝑆𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 ∗ 60 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑠𝑖𝑔𝑛𝑎𝑙
    (3) 

 

Fig 6. Shows the Original Signal and its Shannon Energy Envelope 

 

D. Recurrent Quantification Analysis 

 

RQA is a technique of nonlinear analysis of the dynamical 

system. It is based on the phase space concept, and it quantifies 

the differently appearing recurrence plots [25]. Recurrence 

Plots (RPs) is a graphical tool used to visualize a dynamic 

system according to its phase space trajectory. For the 

construction of RPs, a new phase space T is created from the 

original data [t1, t2, . . ., tn] of length n using time-delay and 

the Takens embedding theorem [26]. T can be reconstructed, as 

shown in equation (4) 

 

{𝑇(1) = {𝑡1, 𝑡1+𝜏 , . . . . . . , 𝑡1+(𝑚−1)𝜏},  

    …  

𝑇(𝑖) = {𝑡𝑖 , 𝑡𝑖+𝜏 , . . . . . . , 𝑡𝑖+(𝑚−1)𝜏},                                               (4)  

    …  

𝑇(𝑛 − (𝑚 − 1)𝜏) = {𝑡𝑛−(𝑚−1)𝜏 , 𝑡𝑛−(𝑚−2)𝜏 , . . . . . . , 𝑡𝑛}  
 

Where T is a square matrix of dimension m x m, and T(i) 

presents the ith row of T matrix, m and τ denote the embedding 

dimension and time delay, respectively. The recurrence matrix 

or the recurrent plots can be calculated using equation (5) 

 

      𝑅𝑖,𝑗   =  𝛩(𝜀 − 𝑇(𝑖) − 𝑇(𝑗))                                             (5) 

          =  { 1 ∶ > 𝑇(𝑖) − 𝑇(𝑗),    𝑖, 𝑗 𝜖 [1 , 𝑛 − (𝑚 − 1)𝜏]   
{ 0 ∶  𝜀 < 𝑇(𝑖) − 𝑇(𝑗),                              

 

Where ‖ · ‖ represents the euclidean distance (L2 norm), ε is the 

recurrence threshold parameter, and 𝑅𝑖,𝑗 is a n − (m −

1) τ ×  n − (m −  1) τ  matrix, and Θ (·) denotes the 
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Heaviside function. If the euclidean distance between 𝑇𝑖 and 𝑇𝑗 

is less than ε, 𝑅𝑖,𝑗 = 0, it creates a black pixel at position (i,j) in 

the recurrence matrix; otherwise, 𝑅𝑖,𝑗  = 1. The recurrence plot 

of a filtered FHR sound signal is shown in Fig. 7 below 

 

 
 

Fig 7. Shows the Recurrence Plot of fetal heart sound signal 
 

The embedding dimension m, threshold, and time delay tau are 

the three essential parameters in RQA and must be tuned to 

construct a good recurrence plot. We used an embedding 

dimension of 330 in this study since it gave a good 

representation of the recurrence behavior present in the signal. 

The time delay τ is set to 2 based on the mutual information 

[27], and ε is empirically set to 0.8. It's highly impractical to 

visually understand the patterns and structures revealed by the 

recurrence plot. Hence, RQA is used to quantify the number and 

duration of small patterns within the recurrence potentials by 

using several recurrence statistics. In this paper, 6 features 

R1−R6 are derived from the RPs. 

 

A. Recurrence Rate 

 

Recurrence Rate (RR) is one of the most important measures of 

RQA. Its value represents the density of the recurrence plot. It 

corresponds with the probability of reoccurrence of a specific 

state in recurrence plot. It is expressed as shown in equation 6 

 

                                    𝑅𝑅 =
1

𝑁2
∑ 𝑅(𝑖, 𝑗) 𝑁

𝑖,𝑗=1                          (6) 

 

where 𝑅(𝑖, 𝑗) is an element of the recurrence plot and N is equal 

to the dimension m of recurrence plot. 
 

B. Determinism 

 

Determinism (DET) differentiates between the organized RPs 

points and the dispersed ones. It measures the predictability of 

the dynamic system. A high value of DET indicates a steady 

system, while a low value denotes a stochastic system. 

 

                                𝐷𝐸𝑇 =  
∑ 𝑙𝑃(𝑙) 𝑁

 𝑙= 𝑙𝑚𝑖𝑛

∑ 𝑙𝑃(𝑙) 𝑁
 𝑙=1

                                  (7) 

 

Where 𝑙𝑚𝑖𝑛 is the minimum length of the diagonal lines and 

𝑃(𝑙) denotes frequency distribution of diagonal line. 

 

C. Laminarity 

 

Laminarity (LAM) is measures the chaotic transitions and it 

signifies the number of laminar phases in a dynamic system. It 

is given by. 
 

                                 𝐿𝐴𝑀 =  
∑ 𝑣𝑃(𝑣) 𝑁

 𝑣= 𝑣𝑚𝑖𝑛

∑ 𝑣𝑃(𝑣)𝑁
 𝑣=1

                             (8) 

 

where 𝑃(𝑣) is the frequency distribution of the vertical lines 

with a minimum length of  𝑣𝑚𝑖𝑛.  LAM increases when RP 

consist of more recurrence point in vertical structures 
 

D. Trapping Time 

 

Trapping Time (TT) is the average time for which a state of 

RPs is recurring (trapped). TT calculates the average length of 

the vertical lines having minimum vertical length 𝑣𝑚𝑖𝑛, and it 

is given by. 
 

                                   𝑇𝑇 =
∑ 𝑣𝑃(𝑣) 𝑁

 𝑣= 𝑣𝑚𝑖𝑛

∑ 𝑣𝑃(𝑣)𝑁
 𝑣=𝑣𝑚𝑖𝑛

                                (9) 

 

E. Shannon Entropy 

 

Shannon Entropy (LENTR) represents the complexity of a 

system and it helps to estimate the required amount 

of information to recover the recurrence plot. 

 

                         𝐿𝐸𝑁𝑇𝑅 = − ∑ 𝑝(𝑙) 𝑙𝑛 𝑝(𝑙)

𝑁

𝑙= 𝑙𝑚𝑖𝑛

                     (10) 

 

 

The probability 𝑝(𝑙) that a diagonal line has length 𝑙 can be 

calculated from the frequency distribution 𝑃(𝑙) 

 

                                      𝑝(𝑙) =
𝑃(𝑙)

∑ 𝑃(𝑙)𝑁
𝑙= 𝑙𝑚𝑖𝑛

                             (11) 

 

where  𝑙𝑚𝑖𝑛 is the minimum length of the diagonal line and 

𝑃(𝑙)  is frequency distribution of the diagonal length. 

 

F. Divergence 

 

It measures the divergence between the phase space trajectories 

of a dynamical system. It calculates the amount of time for 

which the phase space trajectory of a dynamic system runs 

parallel. It is stated as the reciprocal of the maximal length of 

the diagonal lines. Its value corresponds to the positive 
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maximal Lyapunov exponent. In a dynamic system, the 

Lyapunov exponent represents the divergence rate of extremely 

close trajectories. 

 

                                           𝐷𝐼𝑉 =
1

𝐿𝑚𝑎𝑥
                                      (12) 

 

𝐿𝑚𝑎𝑥 denotes the maximum length of the diagonal line. 

 

G. Chroma Vector 

 

Chroma-based features are efficacious for interpreting music 

whose pitch can be categorized (often in twelve categories) and 

whose tuning corresponds to the equal-tempered scale. One 

salient property of chroma vector is it captures the harmonic 

and melodic features of melody while being vigorous to 

changes in tone and instrumentation. It represents how humans 

relate colors to notes. In other words, the same notes from two 

distinct octaves to be of the same color. Thus, we have 12 notes 

at windows A, A#, B, C, C#, D, D#, E, F, F#, G, and G#. These 

notes are not mutually exclusive; one can have more than one 

note for a given time frame. The chroma vector of a sample fetal 

heart audio using a chormogram is shown in Fig 8. 

 

 
Fig 8. Show the chromagram of fetal heart sound signal 

 
We further find the note frequency from the chroma vector. In 

other words, we further found out which note is being hit how 

many times in the signal. Fig 9. below shows the frequency plot 

of chroma vector. 

 

 
Fig 9. Shows the note frequency plot of all 12 notes 

 

Using these extracted features, a final data set consisting of 20 

features is created, which includes. 

  

1. 12 chroma based features (frequency of 12 notes) 

2. 6 RQA features (Recurrence Rate, Determinism, 

Laminarity, Trapping time, Shannon Entropy and 

Divergence) 

3. Beats per minute (BPM) 

4. Pitch Frequency 

VI. FEATURE SELECTION AND MODEL HYPERPARAMETER 

TUNING 

 

The pre-processed data set consists of 862 samples with a class 

imbalance of 75% normal and 25% abnormal categories. The 

25% random samples from the normal class are selected to form 

a new data set to balance the uneven distribution. The new data 

set consists of 448 samples with equal distribution of two 

classes, and it is split into two sets: train and test with 80% and 

20% split, respectively. A five-fold cross-validation method is 

used during training to obtain precise diagnostic accuracy. 

importance each feature is calculated using the feature 

importance function of the Random Forest Classifier. Feature 

important plot is shown in Fig 10. below. 

 

 

 
Fig 10.  Shows the Feature importance plot 
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Top 5 most important features such as (calculated bpm, 

laminarity, pitch frequency, recurrence rate and 3 notes from 

chroma features) are selected as input features. Different 

machine learning models are trained on the selected features. 

Baseline accuracy of each model is compared, and the most 

accurate model is selected based on cross validation accuracy 

and further fine-tuned using Grid Search CV. The initial cross 

validation accuracy of the Gradient boosting classifier was 86% 

better than most of the models and hence it was picked for fine 

tuning. Initial Cross validation accuracy of machine learning 

models are mentioned in Table 1 

 

 

Name 

Test 

Accuracy 

Mean 

Mean 

Precision 

Mean 

Recall 

Mean 

F1-

score 

GradientBoosting

Classifier 

0.869 0.843 0.905 0.873 

XGB Classifier 0.863 0.864 0.860 0.861 

Decision Tree 

Classifier 

0.852 0.849 0.854 0.851 

Bagging Classifier 0.843 0.842 0.849 0.843 

AdaBoost 

Classifier 

0.830 0.807 0.866 0.835 

RandomForest 

Classifier 

0.810 0.806 0.815 0.811 

ExtraTree 

Classifier 

0.807 0.806 0.815 0.805 

KNeighborsClassif

ier 

0.774 0.769 0.782 0.774 

LinearSVC 0.751 0.736 0.781 0.757 

SVC 0.749 0.732 0.781 0.755 

Linear 

Discriminant 

Analysis 

 

0.746 

 

0.731 

 

0.776 

 

0.752 

 
Table 1 shows the accuracy of top-10 machine learning models 

 

After using the model with fine-tuned hyperparameters, the 

cross-validation accuracy of the Gradient Boosting Classifier 

went up to 93.3% performance of different models is shown in 

Table 2 below. 

 

 

Name 

Test 

Accuracy 

Mean 

Mean 

Precision 

Mean 

Recall 

Mean 

F1-

score 

GradientBoosting 

Classifier 

0.93 0.90 0.97 0.94 

XGB Classifier 0.91 0.88 0.95 0.91 

ExtraTree 
Classifier 

0.90 0.87 0.93 0.90 

Bagging Classifier 0.87 0.85 0.90 0.87 

RandomForest 

Classifier 

0.86 0.84 0.90 0.87 

 

Name 

Test 

Accuracy 

Mean 

Mean 

Precision 

Mean 

Recall 

Mean 

F1-

score 

DecisionTree 

Classifier 

0.84 0.83 0.866 0.849 

Adaboost 

Classifier 

0.838 0.813 0.877 0.844 

NuSVC 0.768 0.730 0.855 0.785 

GaussianProcess 

Classifier 

0.765 0.750 0.800 0.772 

SVC 0.757 0.736 0.805 0.768 

KNN classifier 0.757 0.743 0.794 0.767 

 
Table 2 Shows the accuracy of fine-tuned classifiers 

Different feature combination such as (BPM + Pitch Frequency 

+ RQA), (BPM + Chroma + Pitch Frequency), (Chroma + 

RQA) and (BPM + Pitch Frequency + Chroma + RQA) were 

considered and different machine learning model were trained 

on each feature combination. Table 3 shows the top accuracy 

on each feature combination. 

 

 

Name 

Top-Test 

Accuracy 

 

Precision 

 

Recall 

F1-

score 

BPM + Chroma + 

Pitch Frequency) 

 

0.877 

 

0.850 

 

0.910 

 

0.881 

(BPM + Pitch 

Frequency + 

RQA) 

 

0.888 

 

0.870 

 

0.910 

 

0.891 

 

(Chroma +RQA) 

 

0.800 

 

0.846 

 

0.733 

 

0.812 

(BPM + Pitch 
Frequency + 

Chroma + RQA) 

 
0.887 

 
0.840 

 
0.960 

 
0.90 

(BPM + Pitch 

Frequency + 

Chroma + RQA) 

top-10 features 

 

0.910 

 

0.860 

 

0.980 

 

0.914 

(BPM + Pitch 

Frequency + 
Chroma + RQA) 

top-5 features 

 

0.943 

 

0.980 

 

0.910 

 

0.940 

 

Table 3 Shows of the top-1 accuracy of different feature 

combinations 

 

VII. RESULTS 

 

The fine-tuned Gradient boosting classifier was tested on the 

test data set. The proposed hybrid method performs with 

diagnostic accuracies of 94.3% on the test data set. Fig. 11 

shows the confusion matrices for of the Gradient boosting 

classifier. The F1-score, Precision, and Recall of the tuned 

Gradient boosting classifier is shown in Table 4 
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Fig 11. Confusion plot of test sample 

 
 

 

 Precision Recall F1-score 

Normal 0.92 0.98 0.95 

Abnormal 0.98 0.91 0.94 

 

Table 4 shows the precision and recall of final model 

VIII. CONCLUSION AND FUTURE WORK 

In this paper, we proposed a machine learning based FHR 

classification approach using a Gradient boosting classifier. 

Further, the research focuses on collecting more data, 

improving the model performance, and implementing different 

pre-processing techniques to make the classifier more 

generalized and accurate. Since deep learning networks need 

many training samples, with sufficient data, recurrent neural 

network (RNN) architectures such as bidirectional RNN, gated 

recurrent units (GRU's), and long short-term memory (Lstm) 

can be implemented in the future. The adaptation of this 

research can aid the development of a low-cost, safe, and 

commercially available solution for long-term fetal health 

monitoring. The end goal of this research is to create a low-cost 

electronic device that can measure fetal heart signals and 

accurately predict the fetal health. 
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