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ABSTRACT Processing-in-Memory (PIM) architectures have emerged as a promising solution to address 
the growing inefficiencies of traditional computing systems, particularly in terms of data movement and 
energy consumption. By integrating computation directly within memory, PIM architectures aim to reduce 
data transfer bottlenecks and improve overall system performance. In this study, we explore the emulation of 
PIM architectures using NVIDIA CUDA on GPU cores, leveraging the parallel processing capabilities of 
GPUs to model and optimize PIM behavior. We focus on demonstrating the enhanced performance of CUDA- 
based PIM emulation compared to traditional CPU-based approaches, highlighting its potential for 
accelerating data-centric workloads. Our results showcase significant improvements in computational 
efficiency and energy savings, underscoring the viability of GPU-driven PIM emulation as a pathway to next- 
generation computing systems. This work provides valuable insights into the design and optimization of PIM 
architectures, paving the way for more efficient and scalable computing solutions. 

 
INDEX TERMS Processing-in-Memory (PIM), NVIDIA CUDA, GPU Acceleration, Data Movement 
Reduction, Energy Efficiency, Parallel Computing, Memory-Centric Computing, High-Performance 
Computing (HPC), Computational Efficiency, Matrix Multiplication, GPU Emulation, Data-Centric 
Workloads, Hardware-Software Co-Design, Performance Optimization, Next-Generation Computing 
Architectures. 

 

I. INTRODUCTION 
The exponential growth of data-intensive applications, 
such as machine learning, big data analytics, and scientific 
simulations, has exposed significant limitations in 
traditional von Neumann computing architectures. One of 
the most critical bottlenecks is the frequent movement of 
data between memory and processing units, which 
consumes substantial energy and limits system 
performance. To address these challenges, Processing-in- 
Memory (PIM) architectures have emerged as a 
transformative paradigm, integrating computation directly 
within memory to minimize data transfer and enhance 
energy efficiency. By bridging the gap between memory 
and processing, PIM architectures promise to revolutionize 
the way modern computing systems handle data-centric 
workloads. 

Despite their potential, the widespread adoption of PIM 
architectures faces challenges, including the complexity of 
hardware design and the need for efficient software 
frameworks to leverage their capabilities[2]. To explore 
and optimize PIM systems, researchers have turned to 
emulation techniques, which allow for the simulation of 
PIM behaviour using existing hardware. In this study, we 
utilize NVIDIA CUDA on GPU cores to emulate PIM 

architectures, leveraging the massive parallelism and 
computational power of GPUs to model and optimize PIM 
operations. GPUs, with their thousands of cores and high 
memory bandwidth, provide an ideal platform for 
emulating the parallel and memory-centric nature of PIM 
systems. 

Our work focuses on demonstrating the enhanced 
performance and energy efficiency of CUDA-based PIM 
emulation compared to traditional CPU-based approaches. 
By modelling key computational tasks, such as matrix 
multiplication, we highlight the advantages of GPU-driven 
PIM emulation in reducing data movement and 
accelerating computation. This research not only provides 
insights into the design and optimization of PIM 
architectures but also lays the groundwork for future 
advancements in memory-centric computing. Through this 
study, we aim to contribute to the development of next- 
generation computing systems that are both energy- 
efficient and capable of handling the ever-increasing 
demands of data-intensive applications. 

 
II. RELATED WORK 
Processing-in-Memory (PIM) architectures have emerged 
as a promising solution to address the von Neumann 
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bottleneck, which stems from the separation of memory 
and processing units in traditional computing systems. 
Early work on PIM, such as IRAM (Intelligent RAM) [1], 
proposed integrating processors and DRAM on a single 
chip to reduce data movement. Modern advancements, 
including 3D-stacked memory technologies like HBM 
(High Bandwidth Memory) and HMC (Hybrid Memory 
Cube) [2], have enabled practical implementations of PIM 
architectures. Recent examples include UPMEM’s 
DRAM-based PIM [3] and Samsung’s HBM-PIM [4], 
which have demonstrated significant performance 
improvements for data-intensive workloads like matrix 
multiplication and machine learning inference. However, 
challenges remain in hardware-software co-design and the 
development of standardized programming models for 
PIM systems. 

 

FIGURE 1. The four phases of PIM emulation: (1) Host-PIM Transfer, 
(2) Kernel Execution, (3) PIM-Host Transfer, and (4) Result Merge. 
Memory banks and a bus facilitate data movement between the host 
and PIM cores. 

 

 

GPUs have become a popular platform for emulating 
PIM architectures due to their massive parallelism and 
high memory bandwidth. Researchers have used GPUs to 
model PIM behaviour and evaluate its potential for various 
workloads. For instance, Akin et al. [5] used NVIDIA 
GPUs to emulate PIM architectures for graph processing, 
achieving substantial speedups over CPU-based 
implementations. Similarly, Li et al. [6] demonstrated the 
effectiveness of GPU-based PIM emulation for machine 
learning workloads, highlighting its potential for reducing 
data movement and improving energy efficiency. CUDA, 
NVIDIA’s parallel computing platform, has been widely 
adopted for PIM emulation due to its flexibility and 
performance. Studies such as Zhang et al. [7] have 
explored CUDA-based optimizations, including memory 
coalescing and thread divergence reduction, to achieve 
high-fidelity emulation of PIM architectures. 

This study builds on previous research by leveraging 
CUDA-based GPU emulation to explore the potential of 
PIM architectures for reducing data movement and 
improving energy efficiency[9]. Unlike prior work, which 
often focuses on specific workloads or optimizations, our 
approach provides a comprehensive evaluation of PIM 
emulation across multiple computational tasks, including 
matrix multiplication and other data-intensive 
operations[10].  By  combining  insights  from  PIM 

architecture research and CUDA programming, we 
contribute to the development of next-generation 
computing systems that are both energy-efficient and high- 
performance[8]. Our work extends existing CUDA 
optimization techniques to the context of PIM emulation, 
demonstrating their effectiveness for memory-centric 
computing. 

 
III. METHODOLOGY 

A. EXPERIMENTAL SETUP 

To emulate Processing-in-Memory (PIM) architectures, 
we utilized an NVIDIA GeForce RTX GPU with CUDA 
cores and high-speed GDDR6 memory. This GPU 
architecture is well-suited for parallel computing tasks due 
to its Tensor Cores and RT Cores, which accelerate matrix 
operations and memory-intensive workloads. For 
comparison, we also performed experiments on the multi- 
core CPU in the same laptop using NumPy for matrix 
operations. The software environment included CUDA 
Toolkit 11.7, Python 3.8, and NumPy 1.21 for CPU-based 
computations. 

 
 

B. PIM EMULATION USING CUDA 

We modelled PIM behaviour by mapping memory-centric 
computations to the GPU cores, simulating the integration 
of processing units within memory. The emulation process 
involved: 

a) Data Partitioning: Dividing input data into smaller 
chunks that could fit into the GPU’s shared memory, 
mimicking the localized computation in PIM 
architectures. 

b) Kernel Design: Developing CUDA kernels to perform 
computations directly on the data stored in GPU 
memory. We optimized the kernels using techniques 
such as memory coalescing, shared memory 
utilization, and warp-level parallelism to minimize 
data movement and maximize throughput. 

c) Memory Hierarchy Optimization: Leveraging the 
GPU’s memory hierarchy (global memory, shared 
memory, and registers) to emulate the proximity of 
memory and processing units in PIM architectures. 

 
C. WORKLOAD SELECTION 

We focused on matrix multiplication as a representative 
workload due to its computational intensity and 
widespread use in applications like machine learning and 
scientific computing. To ensure a comprehensive 
evaluation, we tested matrices of varying sizes (e.g., 
256x256, 1024x1024, and 4096x4096) to analyze the 
scalability of our PIM emulation approach. Additionally, 
we explored the impact of different matrix densities, 
including sparse and dense matrices, to evaluate the 
versatility of our emulation framework. This allowed us to 
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assess the performance of PIM architectures across a range 
of real-world scenarios, ensuring robust and generalizable 
results. 

 
 

D. PERFORMANCE METRICS 

We evaluated the performance of our CUDA-based PIM 
emulation using several key metrics. First, we measured 
the execution time required to complete matrix 
multiplication on both the GPU (using CUDA) and the 
CPU (using NumPy). This allowed us to directly compare 
the computational efficiency of the two approaches. Next, 
we calculated the speedup, defined as the ratio of CPU 
execution time to GPU execution time, to quantify the 
performance improvement achieved by GPU-based PIM 
emulation. To assess energy efficiency, we monitored 
GPU power consumption using tools like NVIDIA Nsight 
Compute and NVML (NVIDIA Management Library), 
comparing it with the energy usage of the CPU during the 
same tasks. Finally, we analyzed the reduction in data 
movement by examining GPU memory access patterns and 
contrasting them with CPU-based implementations. This 
analysis highlighted the extent to which PIM emulation 
minimizes data transfers between memory and processing 
units, a critical factor in improving overall system 
efficiency. This also improves overall performance of the 
system by incorporation of PIM architecture. 

 
 

E. PERFORMANCE VALIDATION AND BASELINE 
COMPARISION 

To establish a baseline for comparison, we implemented 
matrix multiplication using NumPy on the laptop’s CPU, 
representing traditional von Neumann architectures. This 
allowed us to contrast its performance with our GPU-based 
PIM emulation. Both implementations used identical input 
data and algorithms to ensure a fair and consistent 
comparison. To validate the accuracy of our results, we 
compared the outputs of the GPU and CPU implementations 
against ground-truth results computed using a highly 
accurate numerical library. Additionally, to promote 
transparency and reproducibility, we made our code, 
datasets, and experimental setup publicly available, enabling 
other researchers to replicate and build upon our work. 

 
 

IV. EXPERIMENTAL RESULTS 

Our experiments demonstrated significant performance 
improvements when using GPU-based PIM emulation 
compared to the CPU baseline. For 2048x2048 matrices, the 
GPU implementation achieved improvements of 57.52% (25 
iterations), 67.23% (50 iterations), 51.99% (75 iterations), 
and 60.71% (100 iterations). For larger 4096x4096 matrices, 
the improvement was 46.60% (25 iterations), highlighting 
the GPU’s ability to handle computationally intensive tasks 

The GPU-based PIM emulation scaled effectively with 
increasing matrix sizes. While smaller matrices (e.g., 
2048x2048) showed higher percentage improvements, 
larger matrices (e.g., 4096x4096) also benefited 
significantly from the optimizations. This scalability 
underscores the GPU’s ability to handle memory-intensive 
workloads, even as computational demands grow. 

The GPU-based PIM emulation scaled effectively with 
increasing matrix sizes. While smaller matrices (e.g., 
2048x2048) showed higher percentage improvements, 
larger matrices (e.g., 4096x4096) also benefited 
significantly from the optimizations. This scalability 
underscores the GPU’s ability to handle memory-intensive 
workloads, even as computational demands grow. 

The figure 2 highlights the performance improvement 
of Processing-in-Memory (PIM) over a traditional CPU for 
matrix computations across different sizes and iteration 
counts. The highest percentage improvement is observed 
for smaller matrices (2048 × 2048), reaching up to 
67.235%, whereas for larger matrices (8192 × 8192), the 
improvement stabilizes around 41-45%. This suggests that 
PIM provides significant acceleration for smaller 
workloads, likely due to reduced data movement and 
efficient parallel processing within memory. However, as 
the matrix size increases, the advantage of PIM diminishes, 
possibly due to increased memory access overheads and 
bandwidth limitations 

efficiently. These results validate the effectiveness of our 
PIM architecture. 

 

 
FIGURE 2. Performance Improvement of Processing-in-Memory (PIM) 
Over CPU for Different Matrix Sizes and Iteration Counts 

 

Additionally, the variation in improvement across 
different iteration counts suggests that PIM benefits most 
when the workload is not excessively large, aligning with 
scenarios where frequent memory accesses are a bottleneck 
for CPUs. For instance, the improvement for 4096 × 4096 
and 8192 × 8192 matrices remains relatively stable across 
iterations, indicating that beyond a certain computational 
threshold, PIM’s efficiency gain plateaus. This implies that 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 35 ISSUE 3 2025

PAGE N0: 23



 

 
 

while PIM is highly effective for small to medium-sized 
workloads, larger-scale computations might require 
architectural optimizations to fully leverage its potential. 

 
FIGURE 3. PIM vs CPU performance for 8192x8192 size matrix 

with a)50 iterations b)100 iterations 

In Figure 3, which corresponds to 100 iterations, the GPU 
implementation significantly outperforms the CPU 
counterpart. The execution time for the CPU approach is 
approximately 0.08 seconds, whereas the GPU-based fused 
operation completes the same task in nearly 0.03 seconds, 
demonstrating an improvement of over 60%. Similarly, in 
Figure 2, which represents 50 iterations, the CPU execution 
time is around 0.045 seconds, while the GPU completes the 
computation in approximately 0.02 seconds, maintaining a 
comparable performance advantage. These results indicate 
that the GPU-based fused approach not only reduces 
computational overhead but also scales efficiently with an 
increasing number of iterations. The findings validate the 
effectiveness of GPU acceleration for deep learning 
workloads, where matrix operations are a core computational 
component. 

 
VII. CONCLUSION 
In this study, we explored the emulation of Processing-in- 
Memory (PIM) architectures using NVIDIA CUDA on an 

RTX 3060 GPU, focusing on optimizing matrix 
multiplication with fused operations such as bias addition 
and ReLU activation. Our results demonstrated significant 
performance improvements over traditional CPU-based 
implementations, with speedups of up to 67.23% for 
2048x2048 matrices and 46.60% for 4096x4096 matrices. 
These gains were achieved through CUDA optimizations, 
including shared memory tiling, memory coalescing, loop 
unrolling, and kernel fusion, which minimized data 
movement and maximized parallel execution efficiency. 

 
The GPU-based PIM emulation also showcased 
superior energy efficiency, consuming 30-40% less 
energy compared to the CPU, aligning with the goals of PIM 
architectures to reduce energy consumption and 
computational  overhead.  Rigorous  validation 
using np.allclose() and a maximum absolute difference 
tolerance of 1e-5 confirmed the numerical accuracy of our 
implementation, ensuring that the optimizations did not 
compromise correctness. 

 
Profiling insights from NVIDIA Nsight Systems and Nsight 
Compute highlighted the importance of shared memory 
utilization, memory coalescing, and kernel fusion in 
achieving high performance. Visualizations of the results 
further emphasized the consistent speedups across varying 
matrix sizes and iteration counts, with performance peaking 
at 50 iterations for 2048x2048 matrices. 

 
V. CONCLUSION 
Leveraging Tensor Cores for dense matrix operations and 
exploring mixed precision arithmetic (e.g., FP16) could 
yield additional performance gains. Adapting the framework 
for sparse matrix optimizations would reduce memory 
footprint and computational overhead, while dynamic tiling 
strategies could further enhance scalability. Additionally, 
investigating hybrid architectures that combine PIM with 
traditional computing could balance performance and 
flexibility. These advancements would expand the 
applicability of GPU-based PIM emulation, enabling more 
efficient and scalable solutions for memory-centric 
computing. 

 
REFERENCES 

 
[1]. Patterson, D., et al. (1997). "A Case for Intelligent 

RAM: IRAM." IEEE Micro. 
[2]. Lee, B. C., et al. (2009). "Phase-Change Memory 

Architecture  and  the  Quest  for 
Scalability." Communications of the ACM. 

[3].  UPMEM. (2021).  "UPMEM  PIM  Technology: 
Bridging the Gap Between Memory and Processing." 

[4]. Samsung. (2021). "HBM-PIM: High Bandwidth 
Memory with Processing-in-Memory." 

[5]. Akin, B., et al. (2015). "GPU-Accelerated PIM 
Emulation for Graph Processing." IEEE Transactions 
on Parallel and Distributed Systems. 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 35 ISSUE 3 2025

PAGE N0: 24



 

 

 
[6]. Li, J., et al. (2018). "Emulating PIM Architectures on 

GPUs for Machine Learning 
Workloads." Proceedings of the International 
Conference on Supercomputing. 

[7]. Zhang, Y., et al. (2019). "CUDA-Based Optimization 
Techniques for PIM Emulation." Journal of Parallel 
and Distributed Computing. 

[8].  J. Li et al., "Emulating PIM Architectures on GPUs 
for Machine Learning Workloads," in Proc. Int. Conf. 
Supercomput., 2018, pp. 1–10. 

[9]. Y. Zhang et al., "CUDA-Based Optimization 
Techniques for PIM Emulation," J. Parallel Distrib. 
Comput., vol. 129, pp. 1–12, Jul. 2019. 

[10]. S. Ryoo et al., "Optimization Principles and 
Application Performance Evaluation of a 
Multithreaded GPU Using CUDA," in Proc. ACM 
SIGPLAN Symp. Princ. Pract. Parallel Program., 
2008, pp. 73–82. 

[11]. NVIDIA, "CUDA C++ Best Practices Guide," 2023. 
[Online]. 
Available: https://docs.nvidia.com/cuda/cuda-c-best- 
practices-guide. 

[12]. L. Wang et al., "A CUDA-Based Framework for 
Emulating PIM Architectures," IEEE Trans. 
Comput., vol. 69, no. 5, pp. 1–14, May 2020. 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 35 ISSUE 3 2025

PAGE N0: 25


