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Abstract: Wind power is a critical renewable energy source for sustainable energy systems, but its variability and
intermittency create challenges for accurate forecasting, essential for reliable grid operations and cost management.
This study presents a novel hybrid model integrating Bayesian Linear Regression (BLR) with the Kalman Filter (KF)
for probabilistic wind power prediction. BLR provides an uncertainty-aware baseline forecast, refined by KF for
real-time adaptability to wind variations. Key contributions include combining Bayesian inference for uncertainty
quantification with Kalman filtering for dynamic adjustments. Hyperparameter tuning via grid search and cross-
validation enhances model performance. The model's effectiveness is assessed using metrics such as Mean Squared
Error (MSE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the Coefficient of Determination
(R?). Residual validation through the Durbin-Watson statistic and ANOVA underscores model reliability.
Comparative results indicate the hybrid model achieves an RMSE of 7.5%, outperforming ARIMA (10.5%) and
neural networks (8.2%). These findings highlight the model's robustness and accuracy, addressing critical
challenges in wind power forecasting. By leveraging probabilistic forecasting and real-time adaptability, the hybrid
model offers a scalable solution for smart grid integration. Its superior performance makes it a promising tool for
renewable energy management. Future work will explore expanding the model to other renewable domains and
incorporating additional meteorological features to further enhance prediction accuracy and robustness.

Keywords: Kalman-Filter(KF), Bayesian Linear Regression (BLR), Durbin-Watson statistic, Analysis of
Variance (ANOVA).

1. Introduction

Among renewable energy sources, wind power has become increasingly significant due to its
sustainability, low emissions, and low operational costs [1]. However, the unpredictability of
wind generation presents challenges for ensuring secure grid dispatch and maintaining stable
power system operation. Thus, precise wind power forecasting is crucial for minimizing
dispatching costs and enhancing overall system performance [2][3]. Failure to predict wind
power fluctuations can lead to inconsistencies and significant difficulties for power systems.
Consequently, the successful global integration of wind power is highly dependent on accurate
forecasting [4]. Challenges like insufficient regulation and reserve power, which are commonly
associated with the variability and unpredictability of wind energy, can only be thoroughly
assessed by taking into account the features of conventional generation systems that incorporate
wind power. Among various renewable energy options, predicting the output of wind turbines
is particularly challenging due to the irregular and non-periodic nature of wind. Since wind
power generators depend on wind for energy, the variability in power production is substantial,
making accurate forecasting a crucial concern. The uncertainties in wind power forecasting are
also addressed from a planning perspective [5]. Wind energy offers notable advantages over
other energy sources, particularly in installation and generation costs. This is evidenced by its
remarkable average growth rate of 30% in utilization over the past 15 years. Furthermore,
global cumulative installed wind power capacity surged from approximately 6.1 GW in 1996
to 197.039 GW by 2010 [22].

Machine learning applications for wind power prediction have demonstrated significant
potential, as these methods allow for forecasting by detecting patterns in historical wind data
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[13]. However, several key challenges persist in improving the accuracy and reliability of these
predictions. A major issue in wind power forecasting lies in the considerable variability in
climate conditions and topographical features across different wind power sites [14].
Traditional forecasting methods often rely on centralized data processing, where data from
multiple wind turbines is aggregated and analysed on a central server. While this centralized
approach has certain advantages, it lacks scalability and struggles to keep up with the dynamic
and decentralized nature of wind power generation systems [15]. Moreover, centralized models
may not fully account for the rapidly changing weather conditions and geographical differences
across various locations, leading to reduced adaptability and performance. As a result, there is
a critical need for methods that can effectively manage and integrate these weather and
topographical variations across multiple sites [16]. Li et al. (2022) and Singh et al. (2019),
which have contributed significantly to wind power forecasting. Li et al. (2022) introduced a
spatial-temporal model using Graph Neural Networks and Deep Residual Networks, enhancing
prediction accuracy by capturing inter-turbine correlations. Singh et al. (2019) proposed a
hybrid ARIMA-ANN model, which combines the strengths of statistical and machine learning
methods, effectively addressing the challenges of non-linearity and volatility in wind power
forecasting.

Deep learning has proven to be a powerful method for wind speed prediction due to its
capability to model complex, non-linear relationships in time-series data. Models such as
Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) networks, and Gated
Recurrent Units (GRUs) are often employed because of their effectiveness in capturing
temporal dependencies. These models can process multiple parameters like temperature, wind
speed, wind direction, and humidity, making them highly suitable for long-term forecasting
Convolutional Neural Networks (CNNs), often paired with RNNs, capture local patterns in
wind speed data, while newer attention-based models like Transformer Networks are gaining
attention for their ability to capture global dependencies in time-series data. However, deep
learning models are data-hungry and sensitive to the tuning of hyperparameters, making them
reliant on large datasets and careful model optimization. Bayesian regression offers a
complementary approach to deep learning by focusing on probabilistic predictions. Unlike
traditional linear regression, which gives a single-point estimate, Bayesian regression provides
a distribution of possible outcomes. This is particularly useful for wind power forecasting,
where uncertainty is inherent due to variable weather conditions. Bayesian models excel at
regularization, helping to prevent overfitting a common problem in scenarios where the data is
noisy or sparse. Additionally, Bayesian methods allow for the integration of prior knowledge,
making them adaptable to situations where historical data may be limited. Bayesian regression's
ability to quantify uncertainty provides an advantage in managing the unpredictability of wind
power generation.

The integration of Bayesian regression with the Kalman filter enhances predictive performance
further. The Kalman filter is a powerful tool for making real-time predictions by continuously
updating its estimates as new data comes in. In wind power forecasting, the Bayesian regression
model provides an initial prediction, which is then refined by the Kalman filter to account for
real-time variations in weather conditions. This dynamic updating process is invaluable in an
environment where wind conditions can shift rapidly. The Kalman filter ensures that the model
remains adaptable, improving the overall reliability of wind speed predictions.

Hyperparameter tuning is another critical component in optimizing the performance of
forecasting models. For deep learning methods, parameters such as learning rates, number of
layers, and dropout rates must be fine-tuned to prevent underfitting or overfitting. In Bayesian
regression, the selection of prior distributions and their variances directly influences the model's
accuracy. Similarly, in the Kalman Filter, parameters like process noise covariance and
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measurement noise covariance play a pivotal role in balancing the model’s reliance on prior
predictions versus new observations.

This study builds on the advancements of hybrid models by introducing a novel framework that
integrates Bayesian Linear Regression (BLR) with the Kalman Filter (KF). This combined
approach leverages the strengths of Bayesian inference for uncertainty quantification and
Kalman Filtering for real-time adaptability, resulting in highly accurate and robust wind power
forecasting. By addressing existing challenges and incorporating state-of-the-art
methodologies, this research contributes to the development of reliable, scalable, and adaptive
forecasting solutions for renewable energy systems.

2. Methodology:

This section outlines the machine learning model used for predicting wind power, with particular
emphasis on a hybrid approach that integrates Bayesian Linear Regression (BLR) with a Kalman Filter.
The study evaluates the effectiveness of this model in forecasting wind power. Furthermore,
hyperparameter tuning enhances the model’s accuracy and reliability by optimizing key parameters.

2.1 Data Preprocessing and Model Training Setup:

The forecasting models being developed focus on predicting long-term wind speeds using historical data
provided by the Meteorological Bureau in Gansu Province. This dataset, collected at 10-minute intervals
from January 2018 to March 2020, contains essential parameters including Date/Time, Temperature (at
2m or higher), Wind Speed (at 10m or 100m), Wind Direction (at 10m or 100m), Relative Humidity,
Dew Point, Wind Gusts, and Power Output. Pre-processing is vital for ensuring data quality and
preparing the model, involving tasks such as addressing missing data, identifying outliers, normalizing
or standardizing the data, and formatting it for time-series analysability and unpredictability associated
with wind power generation.

First, preprocess the collected data to improve its quality prior to model development. This involves
removing outliers, which can result from various issues like faulty measurement sensors, and imputing
missing values. Removing outliers is essential for improving the accuracy of the models, as failing to do
so could lead to biased or inaccurate predictions. Missing values in wind speed measurements can occur
due to various reasons, such as data recording errors, thunderstorms, equipment degradation, or
anemometer malfunctions. After preprocessing, the normalized data is split into training and testing sets.
The models are initially trained on the training set, where the model parameters are determined. For
cross-validation, the hold-out method is utilized, allocating a standard of 70% of the data for training and
30% for testing. The model is trained using the training data and subsequently evaluated on the test data
to assess its performance.

2.2 Kalman Filter-Enhanced Bayesian Linear Regression for Predictive Analysis:

Bayesian Linear Regression (BLR) is a probabilistic method where the model parameters (weights) are
treated as random variables, characterized by prior distributions, this approach incorporates the
uncertainty in parameter estimates, making the model more resilient to noisy or limited data. Unlike
standard linear regression, which provides fixed parameter estimates, BLR models the relationship
between input features X and output Y with a distribution over possible weights, resulting in more robust
predictions that reflect both data variability and parameter uncertainty.

Y =Xw+e (M
where:

X = matrix of input features
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w = vector of model parameters (weights)

€ is the error term, assumed to follow a Gaussian distribution.

In Bayesian Linear Regression, instead of calculating a single best estimate for the weights w, the weights
are considered random variables following a probability distribution. Typically, a Gaussian (normal)
distribution is chosen as the prior for the weights. This approach allows the model to incorporate
uncertainty in the weight values, which leads to predictions that better capture the variability and noise
present in the data, rather than relying on fixed point estimates.

p(w) = N(wo, Zo) 2)
where:

w, = prior mean of the weights

X, = prior covariance matrix

Using the training data X and the corresponding targets Y, the objective of Bayesian regression is to
calculate the posterior distribution of the weights, integrating both prior information and the likelihood
of the observed data. The likelihood function is given by:

p(Y 1 X,0) = NXw,d?I) 3)
where I is the identity matrix.

Using Bayes' theorem, the posterior distribution of the weights is:

_ pVIX,w)p(w)
p(w | X,Y) = Kt @

This results in a posterior distribution of the form:

p(w 1 X,Y) = N(wposterior» Zposterior) &)
Where:

Wposterior 18 the mean of the posterior distribution

Zposterior 18 the covariance matrix of the posterior distribution

The posterior mean and covariance are given by:

wposterior = Zposterior (XTY) (6)
- 1 -

Zposterior = (20 T+ ;XTX) ! @)

Given new input data X,,,,,, the predictive distribution for the target Y,,,,, is a Gaussian distribution with
mean and variance:

Y = XnewWposterior (®)
Var(Y") = XneprasteriarX};ew +0? )

This approach provides both a prediction and an estimate of its uncertainty (Variance). The Kalman
Filter works in two main stages: the Prediction Step, where it forecasts the system’s state based on prior
information, and the Update Step, where it refines the forecast using new data. During the Update, the
filter adjusts by weighting the prediction with the uncertainty of the new measurements. This iterative
process enables the Kalman Filter to improve predictions over time by balancing historical estimates
with fresh observations.

The Kalman Filter assumes a linear dynamic system, represented as:
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Xy = Axy — 1 + Buy + w; 10)
Zt=th+Ut (11)
Where:

X, = state at time t

A is the state transition matrix

B is the control input matrix

u, is the control vector

w; is the process noise (assumed to be Gaussian)

Z; is the measurement at time t;

H is the observation matrix

v, is the measurement noise (assumed to be Gaussian)
The prediction and update steps are as follows:

1. Prediction step:
Predicted state estimate:

Reje—1 = AX¢_qjp-1 + By (12)
Predicted covariance estimate:
Pye1 = APt—lIt—lAT +0 (13)
2. Updated Step:
Innovation: y, = z; — H Xyj¢—1 (14)
Innovation covariance:
S, =HP,,_H" +R (15)
Kalman Gain:
K, = Ptlt—1HTSt_1 (16)
Updated state estimate::
e = Ryje—r + Kty* 7
Updated covariance estimate:
Py = (I — KeH)Pye—q (18)

In this hybrid model, Bayesian Linear Regression is used to estimate the linear dependencies in the wind
power data, while the Kalman Filter refines these predictions by updating them sequentially as new data
becomes available. The Kalman Filter allows for dynamic adjustments based on real-time measurements,
thus improving the prediction accuracy over time.

2.3 Training Phase:

Bayesian Linear Regression is utilized on the training data to model the linear relationship between the
input features (such as wind speed and temperature) and wind power generation. The model provides
both the predicted values and the associated uncertainty in these predictions. The predicted wind power
values from Bayesian Linear Regression are then sequentially refined using the Kalman Filter, which
adjusts the predictions based on the discrepancy between the predicted and observed values, enhancing
the forecast as additional data is collected.

Posterior Covariance Matrix Xposterior:
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_ 1 -1
Eposterior = ((20 ! + ?X;rrainXTrain) ) (19)

Where:

X, is the prior covariance matrix

Xrrain 18 the matric of input features for the training set

o? is the noise variance (assumed to be constant)

Posterior Mean Vector wpgsterior:

wposterior

— T
- posteriorXtrain YTrain (20)

Wposterior 18 the posterior estimate of the model parameters (weights)

Yrrain 18 the vector of training target values (wind power generation)

The posterior mean and covariance give us a probabilistic estimate of the model weights, incorporating
both prior beliefs and the likelihood based on observed data.

Testing Phase (Bayesian Linear Regression Predictions):

In the testing phase, predictions are made using the posterior mean wy,sterior Obtained during training.

Predicted Mean for Test Data Yy,

?BLR = Xtestwposterior (21

X¢ese 18 the matrix of input features for the test data
Y51 represents the mean prediction for the test set
Predictive Variance (Uncertainty in the prediction):

Var(?BLR) = Xtestzposteriong;st + g2 (22)

The variance gives us a measure of the uncertainty in the prediction.

2.4 Testing Phase (Kalman Filter Correction):

Once Bayesian Linear Regression provides initial predictions, the Kalman Filter sequentially refines
these predictions by updating them with new measurements.

1.

Kalman Prediction Step (for each time step t):

Xeje—1 = AXpqje1 (23)
A is the state transition matrix (can be identity for simple systems)

X¢c—1 18 the previous state estimate

Prediction Error (Innovation):

Ve =2z — HXye 24)

7, is the actual measurement at time t (wind power observation)

H is the observation matrix

3.

Kalman Gain:

K, = Ptlt—lHT(HTPtlt—lHT + R)_l (25)

Py|t—4 is the predicted covariance matrix

R is the measurement noise covariance
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4. Kalman Updated Step:
Ree = Rye-1 + KOy* (25)

The Kalman Update refines the predicted state X;, based on the prediction error y; and the Kalman gain
K.

5. Updated Covariance Matrix:
Py = (I — KeH)Pye— (26)
This updates the covariance of the state estimate, incorporating new information from the measurement.
Combined Forecast (Bayesian Linear Regression + Kalman Filter):

The final prediction for wind power generation is the combination of the Bayesian Linear Regression
prediction refined by the Kalman Filter:

?final = J?tflt (27

This formula represents the updated estimate of wind power generation at time t, combining the output
of Bayesian Linear Regression with the corrections made by the Kalman Filter based on new
observations.

2.5 Hyperparameter Tuning:

For the Kalman Filter to predict accurately, tuning its hyperparameters is essential. Hyperparameter
tuning refers to adjusting parameters that are not directly learned during the filter's operation but are
critical to its performance. Below are key hyperparameters for tuning in the Kalman Filter for wind
power prediction:

Key Hyperparameters for Kalman Filter:
1. State Covariance Matrix (P):

The state covariance matrix indicates the level of uncertainty the filter has regarding the current state
estimate. Adjusting this value is crucial for balancing confidence in the predictions. If set too low, the
filter may become overly confident in its state prediction and overlook the noise in the measurements.
Conversely, if set too high, the filter will rely excessively on the noisy measurements, which can diminish
prediction accuracy.

2. Process Noise Covariance Matrix (Q):

Thus matrix represents the uncertainty in how the system evolves over time, capturing the influence of
process noise. Adjusting the process noise covariance (Q) is crucial for controlling the filter's
adaptability. Larger values give the filter more freedom to adjust to changes but may result in more
unstable predictions. Smaller values make the model less flexible, assuming the system's behaviour is
more consistent over time.

3. Measurement Noise Covariance Matrix (R):

This matrix captures the uncertainty in the observed data, such as wind speed or power output, reflecting
measurement noise. Adjusting the measurement noise covariance (R) is crucial for balancing the
influence of observed data. If the value is set too low, the filter will overemphasize noisy measurements,
resulting in less accurate predictions. Conversely, if the value is too high, the filter may largely disregard
the measurements, relying excessively on the model’s predictions.

The hyperparameter tuning process for the Kalman Filter can be carried out using methods like grid
search or random search. Grid search entails testing various values for hyperparameters, including
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process noise covariance (Q), measurement noise covariance (R), and initial state covariance (P), across
a predetermined grid to find the optimal combination for enhanced performance. In contrast, random
search randomly samples combinations of hyperparameters and assesses the filter’s accuracy. Cross-
validation is used to further refine the process by dividing the wind power data into training and
validation sets. The Kalman Filter is trained on the training set, and its performance is assessed using the
validation set.

2.6 Enhancing Wind Power Predictability for Renewable Energy Integration:

This study investigates the potential of the machine learning technique of Bayesian Linear Regression
for forecasting wind power. It examines and compares three different hybrid machine-learning models
to predict wind power data. The wind power prediction approach adopted in this research is outlined in

below flow chart.
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Fig. 1 Flowchart illustrating the wind power bifurcation process using a hybrid ML model.

3. Evaluation Metrics:

Mean Squared Error (MSE): MSE calculates the average of the squared differences between the actual
and predicted values, placing a greater penalty on larger errors compared to smaller ones.

MSE = =X, n (y; - §})? (28)
Where:

n = Number of data points
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yi = Actual Values
¥,= Predicted Values

Mean Absolute Error (MAE): MAE reflects the average of the absolute differences between the actual
and predicted values, offering a clearer understanding of prediction error.

MAE =37, 1y~ 5| (29)

Root Mean Squared Error (RMSE): RMSE is the square root of the mean squared error. It provides an
overall measure of the prediction error in the same units as the data, which makes it easier to interpret.

1 ~
RMSE = [ES1,n (- 902 (30)

R-Squared (R?): R-Squared, also known as the coefficient of determination assesses how closely the
predicted values align with the actual data. It represents the proportion of variance in the dependent
variable (wind power) that can be explained by the independent variables.

2 _ 4 IeiGi-90?
RP=1 L 01-v? Gl

Where: y;= Mean of the actual values
4. Robustness and Reliability Evaluation:

In wind power forecasting, evaluating the robustness and reliability of prediction models is crucial for
ensuring their accuracy and objectivity. Two important statistical tests frequently employed for this
purpose are the Durbin-Watson statistic, which examines autocorrelation in the residuals, and the Jarque-
Bera (JB) test, which assesses the normality of the residuals. These tests help gauge the performance of
the models and ensure they deliver reliable predictions in the context of wind power forecasting.

4.1 Durbin-Watson Statistic:

The Durbin-Watson (DW) statistic is utilized to identify the presence of autocorrelation (or serial
correlation) in the residuals of a regression model. Autocorrelation happens when the residuals (errors)
are correlated with one another, which can violate the assumption of independent errors in regression
models and diminish the reliability of predictions.

n _ 2
DW = Zt:z(:’lt et—1) (32)

t=16f
Where:
e; = Residual (error) at time t
e;_,= Residual (error) at time t-1

N=Number of Observation

4.2 Analysis of Variance (ANOVA):

ANOVA is primarily employed to assess whether there are statistically significant differences among the
means of three or more independent groups. It aids in determining if any of the group means differ
significantly from one another.

__ Mean Square Between Groups (MSB)
Mean Square Within Groups (MSW)

(33)
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The Mean Square Between (MSB) reflects the variability arising from differences among the means of
each group. In contrast, the Mean Square Within (MSW) captures the variability within each group,
indicating how individual data points deviate from their respective group averages.

4.3 Steps in ANOVA Analysis:
Step 1: Calculate the group means and the overall mean.

Step 2: Compute the total variance by finding the sum of squares (SS) for both between-group and within-
group variances:

Between-group sum of squares (SSB): Determine how much the group means differ from the overall
mean.

Within-group sum of squares (SSW): Assess how much each data point differs from its respective group
mean.

Step 3: Calculate the F-ratio by dividing the Mean Square Between (MSB) by the Mean Square Within
(MSW).

Step 4: Interpret the F-statistic: If the F-statistic is greater than the critical value obtained from an F-
distribution table, reject the null hypothesis, indicating that there are significant differences between the
group means.

4.4 Discussion and Implications:

Figure 2 compares the actual power output with predicted values generated by the Bayesian Linear
Regression (BLR) model combined with a Kalman Filter (KF). While the model captures the overall
trend, notable fluctuations in the residuals are visible as red spikes, indicating areas where the model’s
accuracy could be improved.

The performance metrics are as follows:
e  Mean Squared Error (MSE): 0.0062, indicating a low error in predictions.
e  Mean Absolute Error (MAE): 0.0448, further confirming model accuracy.

e Root Mean Squared Error (RMSE): 0.0785, representing the standard deviation of the
prediction errors.

e R-squared (R?): 0.8829, indicating that the model explains approximately 88.29% of the
variance in the data.

The Durbin-Watson statistic is 1.5812, suggesting the presence of some positive autocorrelation in the
residuals, which indicates that the residuals are not entirely independent. ANOVA analysis yields a p-
value of 0.4423, suggesting that the predictors used in the model are not statistically significant at
conventional levels.

The data is divided into training and testing sets, with the table displaying the Y-train and Y-test values
obtained from the input power data. The model’s output is the predictions made based on these input
power values.

Table 1. Machine learning Algorithm results for Bayseian Regression model integrated with
Kalman Filter
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Power Y-Train values Y-Test Values Predicted
output
0.30470 0.2182 0.8648 0.5815
0.35160 0.1920 0.7688 0.5319
0.39850 0.0702 0.7207 0.4049
0.44540 0.0276 0.6247 0.3069
0.49220 0.0316 0.5767 0.3352
0.490000 0.0336 0.5286 0.4030
0.438600 0.0396 0.4806 0.4191
0.387200 0.0456 0.4326 0.4770
0.335800 0.0486 0.3496 0.5585
0.28440 0.0607 0.3277 0.6620
0.23300 0.0647 0.3058 0.5975
0.181600 0.0685 0.2182 0.5246
0.164500 0.0561 0.1920 0.3061
0.18170 0.0436 0.0702 0.0307
0.19880000 0.0311 0.0276 0.2446
0.2160000 0.0187 0.0316 0.2066
0.233100 0.0034 0.0336 0.2219
0.250300 0.0168 0.0396 0.3122
0.2477000 0.0570 0.0456 0.3148
0.2255000 0.0744 0.0486 0.3789

Actual vs Predicted - BLR + Kalman Filter
T

Actual
Predicted (BLR + Kalman Filter)

Power Output

0 0.5 1 1.5 2 25
Time x10*

Fig. 2 Actual values Vs Predicted values

The confusion matrix visualizes how well the model classifies the power levels into four discrete classes
(1, 2,3, and 4). The numbers on the diagonal (e.g., 13,872 for class 2) represent correct predictions, while
off-diagonal values indicate misclassifications. For example, 917 instances of class 1 were incorrectly
predicted as class 2. The matrix helps evaluate the model's accuracy, showing that the model performs
best in class 2, with fewer misclassifications in other classes.
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[+ ion Matrix (D ized Power Levels)

228

True Class

Predicted Class

Fig. 3 Confusion matrix (Discretised power Levels) — True class Vs. Predicted class

Correlation Matrix
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Fig. 4 Correlation Coefficient Matrix for Wind Variables

The correlation matrix displays the relationships between various weather variables (e.g., temperature,
humidity, wind speed) and power output. Strong positive correlations (e.g., DewPoint with
Temperature 2m: 0.9455) suggest that these variables have a direct relationship with each other, while
weaker or negative correlations (e.g., WindSpeed 10m with Power: 0.7948) indicate less influence on
power generation. This matrix helps identify key features that contribute to accurate power forecasting.
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0.5~ -

05 % —

Fig. 5. Analysis of variance (ANOVA)

Table 2. ANOVA TABLE:
Source SS Df MS F Prob>f
Columns 0.03 1 0.2637 0.5 0.4805
Error 2319.82 43798 0.05297
Total 2319.85 43799

The Bayesian Linear Regression-Kalman (BLR-Kalman) model proves effective in forecasting wind
power output trends, though further refinement is necessary to address residual fluctuations and improve
statistical significance. This analysis is crucial for informed feature selection and model improvements,
contributing to stronger forecasting performance across various methods.

5. Conclusion:

This study effectively demonstrated the success of a hybrid machine learning model that combines
Bayesian Linear Regression and the Kalman Filter for probabilistic wind power prediction. By
combining the strengths of Bayesian inference and real-time adaptability, this approach accurately
estimates wind power output, even in variable wind conditions. The results show significant
improvements in prediction accuracy and robustness compared to existing methods, with evaluation
metrics (MSE: 0.0058923, MAE: 0.04438, RMSE: 0.0798, R* 0.8778) indicating strong predictive
performance. This model's ability to quantify uncertainty and adapt to changing conditions makes it a
compelling choice for renewable energy management systems.

Utility operators can leverage the model for short-term and day-ahead wind power forecasting to improve
grid stability and reduce operational costs, adapt it for large-scale deployment in distributed renewable
energy systems with real-time data streams, and enhance its robustness by integrating Bayesian inference
with other adaptive filtering techniques. Future studies could enhance the hybrid BLR-KF model by
integrating federated learning for decentralized data privacy, combining it with advanced models like
Transformer Networks to improve predictive capabilities, applying it to other renewable energy domains
such as solar or hydro for versatility, and investigating its effectiveness in long-term forecasting and
extreme weather scenarios, thereby addressing limitations and advancing sustainable energy forecasting.
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