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Abstract: Wind power is a critical renewable energy source for sustainable energy systems, but its variability and 
intermittency create challenges for accurate forecasting, essential for reliable grid operations and cost management. 
This study presents a novel hybrid model integrating Bayesian Linear Regression (BLR) with the Kalman Filter (KF) 
for probabilistic wind power prediction. BLR provides an uncertainty-aware baseline forecast, refined by KF for 
real-time adaptability to wind variations. Key contributions include combining Bayesian inference for uncertainty 
quantification with Kalman filtering for dynamic adjustments. Hyperparameter tuning via grid search and cross-
validation enhances model performance. The model's effectiveness is assessed using metrics such as Mean Squared 
Error (MSE), Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and the Coefficient of Determination 
(R²). Residual validation through the Durbin-Watson statistic and ANOVA underscores model reliability. 
Comparative results indicate the hybrid model achieves an RMSE of 7.5%, outperforming ARIMA (10.5%) and 
neural networks (8.2%). These findings highlight the model's robustness and accuracy, addressing critical 
challenges in wind power forecasting. By leveraging probabilistic forecasting and real-time adaptability, the hybrid 
model offers a scalable solution for smart grid integration. Its superior performance makes it a promising tool for 
renewable energy management. Future work will explore expanding the model to other renewable domains and 
incorporating additional meteorological features to further enhance prediction accuracy and robustness. 

Keywords: Kalman-Filter(KF), Bayesian Linear Regression (BLR), Durbin-Watson statistic, Analysis of 
Variance (ANOVA). 

1. Introduction 

Among renewable energy sources, wind power has become increasingly significant due to its 
sustainability, low emissions, and low operational costs [1]. However, the unpredictability of 
wind generation presents challenges for ensuring secure grid dispatch and maintaining stable 
power system operation. Thus, precise wind power forecasting is crucial for minimizing 
dispatching costs and enhancing overall system performance [2][3]. Failure to predict wind 
power fluctuations can lead to inconsistencies and significant difficulties for power systems. 
Consequently, the successful global integration of wind power is highly dependent on accurate 
forecasting [4]. Challenges like insufficient regulation and reserve power, which are commonly 
associated with the variability and unpredictability of wind energy, can only be thoroughly 
assessed by taking into account the features of conventional generation systems that incorporate 
wind power. Among various renewable energy options, predicting the output of wind turbines 
is particularly challenging due to the irregular and non-periodic nature of wind. Since wind 
power generators depend on wind for energy, the variability in power production is substantial, 
making accurate forecasting a crucial concern. The uncertainties in wind power forecasting are 
also addressed from a planning perspective [5]. Wind energy offers notable advantages over 
other energy sources, particularly in installation and generation costs. This is evidenced by its 
remarkable average growth rate of 30% in utilization over the past 15 years. Furthermore, 
global cumulative installed wind power capacity surged from approximately 6.1 GW in 1996 
to 197.039 GW by 2010 [22]. 

Machine learning applications for wind power prediction have demonstrated significant 
potential, as these methods allow for forecasting by detecting patterns in historical wind data 
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[13]. However, several key challenges persist in improving the accuracy and reliability of these 
predictions. A major issue in wind power forecasting lies in the considerable variability in 
climate conditions and topographical features across different wind power sites [14]. 
Traditional forecasting methods often rely on centralized data processing, where data from 
multiple wind turbines is aggregated and analysed on a central server. While this centralized 
approach has certain advantages, it lacks scalability and struggles to keep up with the dynamic 
and decentralized nature of wind power generation systems [15]. Moreover, centralized models 
may not fully account for the rapidly changing weather conditions and geographical differences 
across various locations, leading to reduced adaptability and performance. As a result, there is 
a critical need for methods that can effectively manage and integrate these weather and 
topographical variations across multiple sites [16]. Li et al. (2022) and Singh et al. (2019), 
which have contributed significantly to wind power forecasting. Li et al. (2022) introduced a 
spatial-temporal model using Graph Neural Networks and Deep Residual Networks, enhancing 
prediction accuracy by capturing inter-turbine correlations. Singh et al. (2019) proposed a 
hybrid ARIMA-ANN model, which combines the strengths of statistical and machine learning 
methods, effectively addressing the challenges of non-linearity and volatility in wind power 
forecasting. 

Deep learning has proven to be a powerful method for wind speed prediction due to its 
capability to model complex, non-linear relationships in time-series data. Models such as 
Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) networks, and Gated 
Recurrent Units (GRUs) are often employed because of their effectiveness in capturing 
temporal dependencies. These models can process multiple parameters like temperature, wind 
speed, wind direction, and humidity, making them highly suitable for long-term forecasting 
Convolutional Neural Networks (CNNs), often paired with RNNs, capture local patterns in 
wind speed data, while newer attention-based models like Transformer Networks are gaining 
attention for their ability to capture global dependencies in time-series data. However, deep 
learning models are data-hungry and sensitive to the tuning of hyperparameters, making them 
reliant on large datasets and careful model optimization. Bayesian regression offers a 
complementary approach to deep learning by focusing on probabilistic predictions. Unlike 
traditional linear regression, which gives a single-point estimate, Bayesian regression provides 
a distribution of possible outcomes. This is particularly useful for wind power forecasting, 
where uncertainty is inherent due to variable weather conditions. Bayesian models excel at 
regularization, helping to prevent overfitting a common problem in scenarios where the data is 
noisy or sparse. Additionally, Bayesian methods allow for the integration of prior knowledge, 
making them adaptable to situations where historical data may be limited. Bayesian regression's 
ability to quantify uncertainty provides an advantage in managing the unpredictability of wind 
power generation. 

The integration of Bayesian regression with the Kalman filter enhances predictive performance 
further. The Kalman filter is a powerful tool for making real-time predictions by continuously 
updating its estimates as new data comes in. In wind power forecasting, the Bayesian regression 
model provides an initial prediction, which is then refined by the Kalman filter to account for 
real-time variations in weather conditions. This dynamic updating process is invaluable in an 
environment where wind conditions can shift rapidly. The Kalman filter ensures that the model 
remains adaptable, improving the overall reliability of wind speed predictions. 

Hyperparameter tuning is another critical component in optimizing the performance of 
forecasting models. For deep learning methods, parameters such as learning rates, number of 
layers, and dropout rates must be fine-tuned to prevent underfitting or overfitting. In Bayesian 
regression, the selection of prior distributions and their variances directly influences the model's 
accuracy. Similarly, in the Kalman Filter, parameters like process noise covariance and 
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measurement noise covariance play a pivotal role in balancing the model’s reliance on prior 
predictions versus new observations. 

This study builds on the advancements of hybrid models by introducing a novel framework that 
integrates Bayesian Linear Regression (BLR) with the Kalman Filter (KF). This combined 
approach leverages the strengths of Bayesian inference for uncertainty quantification and 
Kalman Filtering for real-time adaptability, resulting in highly accurate and robust wind power 
forecasting. By addressing existing challenges and incorporating state-of-the-art 
methodologies, this research contributes to the development of reliable, scalable, and adaptive 
forecasting solutions for renewable energy systems. 

2. Methodology:   

This section outlines the machine learning model used for predicting wind power, with particular 
emphasis on a hybrid approach that integrates Bayesian Linear Regression (BLR) with a Kalman Filter. 

The study evaluates the effectiveness of this model in forecasting wind power. Furthermore, 
hyperparameter tuning enhances the model’s accuracy and reliability by optimizing key parameters. 

2.1 Data Preprocessing and Model Training Setup: 

The forecasting models being developed focus on predicting long-term wind speeds using historical data 
provided by the Meteorological Bureau in Gansu Province. This dataset, collected at 10-minute intervals 
from January 2018 to March 2020, contains essential parameters including Date/Time, Temperature (at 
2m or higher), Wind Speed (at 10m or 100m), Wind Direction (at 10m or 100m), Relative Humidity, 
Dew Point, Wind Gusts, and Power Output. Pre-processing is vital for ensuring data quality and 
preparing the model, involving tasks such as addressing missing data, identifying outliers, normalizing 

or standardizing the data, and formatting it for time-series analysability and unpredictability associated 
with wind power generation. 

First, preprocess the collected data to improve its quality prior to model development. This involves 

removing outliers, which can result from various issues like faulty measurement sensors, and imputing 
missing values. Removing outliers is essential for improving the accuracy of the models, as failing to do 
so could lead to biased or inaccurate predictions. Missing values in wind speed measurements can occur 
due to various reasons, such as data recording errors, thunderstorms, equipment degradation, or 

anemometer malfunctions. After preprocessing, the normalized data is split into training and testing sets. 
The models are initially trained on the training set, where the model parameters are determined. For 
cross-validation, the hold-out method is utilized, allocating a standard of 70% of the data for training and 
30% for testing. The model is trained using the training data and subsequently evaluated on the test data 
to assess its performance. 

 

2.2 Kalman Filter-Enhanced Bayesian Linear Regression for Predictive Analysis: 

Bayesian Linear Regression (BLR) is a probabilistic method where the model parameters (weights) are 
treated as random variables, characterized by prior distributions, this approach incorporates the 
uncertainty in parameter estimates, making the model more resilient to noisy or limited data. Unlike 
standard linear regression, which provides fixed parameter estimates, BLR models the relationship 
between input features X and output Y with a distribution over possible weights, resulting in more robust 
predictions that reflect both data variability and parameter uncertainty. 

� = �� + �                                                                                                                                                                  (1) 

where:  

X = matrix of input features 
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� =  vector of model parameters (weights) 

ϵ is the error term, assumed to follow a Gaussian distribution. 
 
In Bayesian Linear Regression, instead of calculating a single best estimate for the weights �, the weights 
are considered random variables following a probability distribution. Typically, a Gaussian (normal) 
distribution is chosen as the prior for the weights. This approach allows the model to incorporate 
uncertainty in the weight values, which leads to predictions that better capture the variability and noise 
present in the data, rather than relying on fixed point estimates. 
 
p(ω) = N(ω�, Σ�)                                                                                                                                 (2) 

 
where: 

ω� =  prior mean of the weights 

Σ� =  prior covariance matrix 

Using the training data X and the corresponding targets Y, the objective of Bayesian regression is to 
calculate the posterior distribution of the weights, integrating both prior information and the likelihood 
of the observed data. The likelihood function is given by:  
�(� ∣ �, �) = �(��, ���)                                                                                                                    (3) 
where I is the identity matrix. 

Using Bayes' theorem, the posterior distribution of the weights is: 

�(� ∣ �, �) =
�(�∣�,�)�(�)

�(�∣�)
                                                                                                                     (4) 

This results in a posterior distribution of the form: 

�(� ∣ �, �) = �(����������, ����������)                                                                                                (5) 

Where: 

����������  is the mean of the posterior distribution 

����������  is the covariance matrix of the posterior distribution 

The posterior mean and covariance are given by: 

���������� = ����������(���)                                                                                                                (6) 

���������� = (��
�� +

�

�� ���)��                                                                                                             (7) 

Given new input data ����, the predictive distribution for the target ���� is a Gaussian distribution with 
mean and variance: 

�� = ��������������                                                                                                                                (8) 

���(�^) = ������������������
� + ��                                                                                                  (9) 

This approach provides both a prediction and an estimate of its uncertainty (Variance). The Kalman 
Filter works in two main stages: the Prediction Step, where it forecasts the system’s state based on prior 
information, and the Update Step, where it refines the forecast using new data. During the Update, the 
filter adjusts by weighting the prediction with the uncertainty of the new measurements. This iterative 
process enables the Kalman Filter to improve predictions over time by balancing historical estimates 
with fresh observations. 
The Kalman Filter assumes a linear dynamic system, represented as: 
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�� = ��� − 1 + ��� + ��                                                                                                                     (10) 

�� = ��� + ��                                                                                                                                       (11) 

Where: 

�� = state at time t1 

A is the state transition matrix 

B is the control input matrix 

��  is the control vector 

�� is the process noise (assumed to be Gaussian) 

�� is the measurement at time t1 

H is the observation matrix 

�� is the measurement noise (assumed to be Gaussian) 

The prediction and update steps are as follows: 

1. Prediction step: 
Predicted state estimate: 

 ���∣��� = ������∣��� + ���                                                                                                                    (12) 

Predicted covariance estimate: 

 ��∣��� = �����∣����� + �                                                                                                                  (13) 

2. Updated Step: 

Innovation: �� = �� − � ���∣���                                                                                                            (14) 

Innovation covariance: 

 �� = ���∣����� + �                                                                                                                           (15) 

Kalman Gain: 

 �� = ��∣�������
��                                                                                                                                    (16) 

Updated state estimate:∶ 

 ���∣� = ���∣��� + ��y�                                                                                                                                (17) 
Updated covariance estimate: 

��∣� = (� − ���)��∣���                                                                                                                               (18) 

  

In this hybrid model, Bayesian Linear Regression is used to estimate the linear dependencies in the wind 
power data, while the Kalman Filter refines these predictions by updating them sequentially as new data 
becomes available. The Kalman Filter allows for dynamic adjustments based on real-time measurements, 
thus improving the prediction accuracy over time. 

2.3 Training Phase: 

Bayesian Linear Regression is utilized on the training data to model the linear relationship between the 

input features (such as wind speed and temperature) and wind power generation. The model provides 
both the predicted values and the associated uncertainty in these predictions. The predicted wind power 

values from Bayesian Linear Regression are then sequentially refined using the Kalman Filter, which 
adjusts the predictions based on the discrepancy between the predicted and observed values, enhancing 

the forecast as additional data is collected. 

Posterior Covariance Matrix ���������� : 
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���������� = ����
�� +

�

�� ������
� �������

��

�                                                                                         (19) 

Where: 

�� is the prior covariance matrix 

������ is the matric of input features for the training set 

�� is the noise variance (assumed to be constant) 

Posterior Mean Vector ����������: 

���������� = ����������������
� ������                                                                                                   (20) 

����������  is the posterior estimate of the model parameters (weights) 

������ is the vector of training target values (wind power generation) 

The posterior mean and covariance give us a probabilistic estimate of the model weights, incorporating 
both prior beliefs and the likelihood based on observed data. 

Testing Phase (Bayesian Linear Regression Predictions): 

In the testing phase, predictions are made using the posterior mean ����������  obtained during training. 

 Predicted Mean for Test Data �����  : 

����� = ���������������                                                                                                                  (21) 

����� is the matrix of input features for the test data 

�����  represents the mean prediction for the test set 

 Predictive Variance (Uncertainty in the prediction): 

���(�����) = ��������������������
� + ��                                                                                               (22) 

The variance gives us a measure of the uncertainty in the prediction. 
 

2.4 Testing Phase (Kalman Filter Correction): 

Once Bayesian Linear Regression provides initial predictions, the Kalman Filter sequentially refines 
these predictions by updating them with new measurements. 

1. Kalman Prediction Step (for each time step t): 

���∣��� = ������∣���                                                                                                                 (23) 

A is the state transition matrix (can be identity for simple systems) 

���∣��� is the previous state estimate 

2. Prediction Error (Innovation): 

�� = �� − ����∣���                                                                                                                                (24) 

�� is the actual measurement at time t (wind power observation) 

H is the observation matrix 

3. Kalman Gain: 

�� = ��∣�����(����∣����� + �)��                                                                                                   (25) 

��∣��� is the predicted covariance matrix 

R is the measurement noise covariance 
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4. Kalman Updated Step: 

���∣� = ���∣��� + ����                                                                                                                     (25) 

The Kalman Update refines the predicted state ���∣� based on the prediction error yt and the Kalman gain 

Kt. 

5. Updated Covariance Matrix: 

��∣� = (� − ���)��∣���                                                                                                                       (26) 

This updates the covariance of the state estimate, incorporating new information from the measurement. 

Combined Forecast (Bayesian Linear Regression + Kalman Filter): 

The final prediction for wind power generation is the combination of the Bayesian Linear Regression 
prediction refined by the Kalman Filter: 

������� = ���∣�                                                                                                                                          (27) 

This formula represents the updated estimate of wind power generation at time t, combining the output 
of Bayesian Linear Regression with the corrections made by the Kalman Filter based on new 
observations. 

2.5 Hyperparameter Tuning: 

For the Kalman Filter to predict accurately, tuning its hyperparameters is essential. Hyperparameter 

tuning refers to adjusting parameters that are not directly learned during the filter's operation but are 
critical to its performance. Below are key hyperparameters for tuning in the Kalman Filter for wind 

power prediction: 

Key Hyperparameters for Kalman Filter: 

1. State Covariance Matrix (P): 

The state covariance matrix indicates the level of uncertainty the filter has regarding the current state 
estimate. Adjusting this value is crucial for balancing confidence in the predictions. If set too low, the 
filter may become overly confident in its state prediction and overlook the noise in the measurements. 
Conversely, if set too high, the filter will rely excessively on the noisy measurements, which can diminish 
prediction accuracy. 

2. Process Noise Covariance Matrix (Q): 

Thus matrix represents the uncertainty in how the system evolves over time, capturing the influence of 
process noise. Adjusting the process noise covariance (Q) is crucial for controlling the filter's 
adaptability. Larger values give the filter more freedom to adjust to changes but may result in more 
unstable predictions. Smaller values make the model less flexible, assuming the system's behaviour is 
more consistent over time. 

3. Measurement Noise Covariance Matrix (R): 

This matrix captures the uncertainty in the observed data, such as wind speed or power output, reflecting 

measurement noise. Adjusting the measurement noise covariance (R) is crucial for balancing the 
influence of observed data. If the value is set too low, the filter will overemphasize noisy measurements, 
resulting in less accurate predictions. Conversely, if the value is too high, the filter may largely disregard 
the measurements, relying excessively on the model’s predictions. 

The hyperparameter tuning process for the Kalman Filter can be carried out using methods like grid 
search or random search. Grid search entails testing various values for hyperparameters, including 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 36 ISSUE 1 2026

PAGE NO: 131



process noise covariance (Q), measurement noise covariance (R), and initial state covariance (P), across 
a predetermined grid to find the optimal combination for enhanced performance. In contrast, random 
search randomly samples combinations of hyperparameters and assesses the filter’s accuracy. Cross-
validation is used to further refine the process by dividing the wind power data into training and 
validation sets. The Kalman Filter is trained on the training set, and its performance is assessed using the 
validation set. 

2.6 Enhancing Wind Power Predictability for Renewable Energy Integration: 

This study investigates the potential of the machine learning technique of Bayesian Linear Regression 
for forecasting wind power. It examines and compares three different hybrid machine-learning models 

to predict wind power data. The wind power prediction approach adopted in this research is outlined in 
below flow chart.

Fig. 1 Flowchart illustrating the wind power bifurcation process using a hybrid ML model. 

 

 

3. Evaluation Metrics: 

Mean Squared Error (MSE): MSE calculates the average of the squared differences between the actual 
and predicted values, placing a greater penalty on larger errors compared to smaller ones. 

MSE =
�

�
∑ n�

��� (y� − y��)�                                                                                                                   (28) 

Where: 

n = Number of data points 
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yi = Actual Values 

y��= Predicted Values 

Mean Absolute Error (MAE): MAE reflects the average of the absolute differences between the actual 
and predicted values, offering a clearer understanding of prediction error. 

��� =
�

�
∑ ∣ �� − ��� ∣�

���                                                                                                                      (29) 

Root Mean Squared Error (RMSE): RMSE is the square root of the mean squared error. It provides an 
overall measure of the prediction error in the same units as the data, which makes it easier to interpret. 

���� = �
�

�
∑ ��

��� (�� − ���)�                                                                                                             (30) 

R-Squared (R²): R-Squared, also known as the coefficient of determination assesses how closely the 

predicted values align with the actual data. It represents the proportion of variance in the dependent 
variable (wind power) that can be explained by the independent variables. 

R� = 1 −
∑ (������)��

���

∑ (������)��
���

                                                                                                                            (31) 

Where:  y��= Mean of the actual values 

4. Robustness and Reliability Evaluation: 

In wind power forecasting, evaluating the robustness and reliability of prediction models is crucial for 
ensuring their accuracy and objectivity. Two important statistical tests frequently employed for this 
purpose are the Durbin-Watson statistic, which examines autocorrelation in the residuals, and the Jarque-
Bera (JB) test, which assesses the normality of the residuals. These tests help gauge the performance of 
the models and ensure they deliver reliable predictions in the context of wind power forecasting. 
 

4.1 Durbin-Watson Statistic: 

The Durbin-Watson (DW) statistic is utilized to identify the presence of autocorrelation (or serial 

correlation) in the residuals of a regression model. Autocorrelation happens when the residuals (errors) 
are correlated with one another, which can violate the assumption of independent errors in regression 
models and diminish the reliability of predictions. 

�� =
∑ (�������)��

���

∑ ��
��

���
                                                                                                                      (32) 

Where: 

�� = Residual (error) at time t 

����= Residual (error) at time t-1 

N=Number of Observation 

 

4.2  Analysis of Variance (ANOVA): 

ANOVA is primarily employed to assess whether there are statistically significant differences among the 
means of three or more independent groups. It aids in determining if any of the group means differ 

significantly from one another. 

� =
���� ������ ������� ������ (���)

���� ������ ������ ������ (���)
                                                                                                     (33) 
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The Mean Square Between (MSB) reflects the variability arising from differences among the means of 
each group. In contrast, the Mean Square Within (MSW) captures the variability within each group, 
indicating how individual data points deviate from their respective group averages. 

4.3 Steps in ANOVA Analysis: 

Step 1: Calculate the group means and the overall mean. 

Step 2: Compute the total variance by finding the sum of squares (SS) for both between-group and within-

group variances: 

Between-group sum of squares (SSB): Determine how much the group means differ from the overall 
mean. 

Within-group sum of squares (SSW): Assess how much each data point differs from its respective group 
mean. 

Step 3: Calculate the F-ratio by dividing the Mean Square Between (MSB) by the Mean Square Within 
(MSW). 

 

Step 4: Interpret the F-statistic: If the F-statistic is greater than the critical value obtained from an F-
distribution table, reject the null hypothesis, indicating that there are significant differences between the 
group means. 

4.4 Discussion and Implications: 

Figure 2 compares the actual power output with predicted values generated by the Bayesian Linear 
Regression (BLR) model combined with a Kalman Filter (KF). While the model captures the overall 
trend, notable fluctuations in the residuals are visible as red spikes, indicating areas where the model’s 
accuracy could be improved.  

The performance metrics are as follows: 

 Mean Squared Error (MSE): 0.0062, indicating a low error in predictions. 

 Mean Absolute Error (MAE): 0.0448, further confirming model accuracy. 

 Root Mean Squared Error (RMSE): 0.0785, representing the standard deviation of the 
prediction errors. 

 R-squared (R²): 0.8829, indicating that the model explains approximately 88.29% of the 
variance in the data. 

The Durbin-Watson statistic is 1.5812, suggesting the presence of some positive autocorrelation in the 
residuals, which indicates that the residuals are not entirely independent. ANOVA analysis yields a p-
value of 0.4423, suggesting that the predictors used in the model are not statistically significant at 
conventional levels. 

The data is divided into training and testing sets, with the table displaying the Y-train and Y-test values 
obtained from the input power data. The model’s output is the predictions made based on these input 
power values. 

Table 1. Machine learning Algorithm results for Bayseian Regression model integrated with 

Kalman Filter    
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Power Y-Train values Y-Test Values 
Predicted 
output 

0.30470 0.2182 0.8648 0.5815 

0.35160 0.1920 0.7688 0.5319 

0.39850 0.0702 0.7207 0.4049 

0.44540 0.0276 0.6247 0.3069 

0.49220 0.0316 0.5767 0.3352 

0.490000 0.0336 0.5286 0.4030 

0.438600 0.0396 0.4806 0.4191 

0.387200 0.0456 0.4326 0.4770 

0.335800 0.0486 0.3496 0.5585 

0.28440 0.0607 0.3277 0.6620 

0.23300 0.0647 0.3058 0.5975 

0.181600 0.0685 0.2182 0.5246 

0.164500 0.0561 0.1920 0.3061 

0.18170 0.0436 0.0702 0.0307 

0.19880000 0.0311 0.0276 0.2446 

0.2160000 0.0187 0.0316 0.2066 

0.233100 0.0034 0.0336 0.2219 

0.250300 0.0168 0.0396 0.3122 

0.2477000 0.0570 0.0456 0.3148 

0.2255000 0.0744 0.0486 0.3789 

 

Fig. 2 Actual values Vs Predicted values 

The confusion matrix visualizes how well the model classifies the power levels into four discrete classes 
(1, 2, 3, and 4). The numbers on the diagonal (e.g., 13,872 for class 2) represent correct predictions, while 
off-diagonal values indicate misclassifications. For example, 917 instances of class 1 were incorrectly 
predicted as class 2. The matrix helps evaluate the model's accuracy, showing that the model performs 
best in class 2, with fewer misclassifications in other classes.  
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Fig. 3 Confusion matrix (Discretised power Levels) – True class Vs. Predicted class 

 

 

Fig. 4 Correlation Coefficient Matrix for Wind Variables 

The correlation matrix displays the relationships between various weather variables (e.g., temperature, 
humidity, wind speed) and power output. Strong positive correlations (e.g., DewPoint with 
Temperature_2m: 0.9455) suggest that these variables have a direct relationship with each other, while 
weaker or negative correlations (e.g., WindSpeed_10m with Power: 0.7948) indicate less influence on 
power generation. This matrix helps identify key features that contribute to accurate power forecasting. 
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Fig. 5. Analysis of variance (ANOVA) 

 

Table 2. ANOVA TABLE: 

Source SS Df MS F Prob>f 
Columns 0.03 1 0.2637 0.5 0.4805 
Error 2319.82 43798 0.05297   
Total 2319.85 43799    

The Bayesian Linear Regression-Kalman (BLR-Kalman) model proves effective in forecasting wind 
power output trends, though further refinement is necessary to address residual fluctuations and improve 
statistical significance. This analysis is crucial for informed feature selection and model improvements, 
contributing to stronger forecasting performance across various methods.

5. Conclusion: 

This study effectively demonstrated the success of a hybrid machine learning model that combines 
Bayesian Linear Regression and the Kalman Filter for probabilistic wind power prediction. By 
combining the strengths of Bayesian inference and real-time adaptability, this approach accurately 
estimates wind power output, even in variable wind conditions. The results show significant 

improvements in prediction accuracy and robustness compared to existing methods, with evaluation 
metrics (MSE: 0.0058923, MAE: 0.04438, RMSE: 0.0798, R²: 0.8778) indicating strong predictive 

performance. This model's ability to quantify uncertainty and adapt to changing conditions makes it a 
compelling choice for renewable energy management systems. 

Utility operators can leverage the model for short-term and day-ahead wind power forecasting to improve 
grid stability and reduce operational costs, adapt it for large-scale deployment in distributed renewable 
energy systems with real-time data streams, and enhance its robustness by integrating Bayesian inference 
with other adaptive filtering techniques. Future studies could enhance the hybrid BLR-KF model by 

integrating federated learning for decentralized data privacy, combining it with advanced models like 
Transformer Networks to improve predictive capabilities, applying it to other renewable energy domains 

such as solar or hydro for versatility, and investigating its effectiveness in long-term forecasting and 
extreme weather scenarios, thereby addressing limitations and advancing sustainable energy forecasting.
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