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Abstract:
This paper explores various solitary and periodic wave solutions for nonlinear evolution equations
with ordinary and variable coefficients. Utilizing the Jacobi Elliptic Functions, the study proposes a
method incorporating an auxiliary equation and function transformation to construct new soliton-like
and triangular wave solutions for first kind KdV equation. The methodology involves transforming
the nonlinear evolution equation into a solvable form, leading to solutions expressed through Jacobi
elliptic functions. These findings extend existing research on material property descriptions,
providing exact solutions to nonlinear equations with variable coefficients, which are crucial for
accurately modeling substance movement transformation systems.
Key words: Jacobi elliptic functions, nonlinear evolution equations, Degenrate soliton solutions,
Forcible terms
1. Introduction :
Numerous solitary and periodic wave solutions for nonlinear evolution equations with constant
coefficients have been proposed. The use of Jacobi Elliptic Functions is a highly effective technique
for finding exact solutions to partial differential equations with forcing terms 1%, However,
nonlinear evolution equations with constant coefficients only provide an approximate representation
of the material transformation system. To better describe material properties, researchers have studied
nonlinear evolution equations with variable coefficients, yielding significant research advancements
[11-17) "This paper introduces a method involving an auxiliary equation with a function transformation.
Using this approach, we construct new degenerate soliton-like solutions and triangular function wave
solutions for first kind KdV equation with variable coefficients.
2. Method and Application Procedure :

Let a nonlinear evolution equation with variable coefficients ia as follows:

H(u, Uy, Ug, Uyy User, Uggy ---- ) = 0. (1)
using transformation u(x,t) = u($), and & = p(t)x + q(t), where p(t) and q(t) are functions of ¢t

and to be determined, and assume the solutions of Eq. (1) to be in the following form:

u(x,t) = go(®) + g1(6)z(3), 2)
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Where g,(t) and g, (t) are functions of t and to be determined, and z(§) is determined by the following

auxiliary equation

(Z9)" = az(e) + bz2(6) + c2*(®), 3
and we will obtain the solutions of Eq. (3) as follows:
when a = 4,b = —4(1 + k?),and ¢ = 4k?,then  z(&) = sn?(¢,k); “4)
when a = —4(—1+ k?),b = 4(—1 + 2k?),and ¢ = —4k?,then z(§) = cn?(&,k);  (5)
when a = 4(—1+ k?),b = —4(—2 + k?),and ¢ = —4then  z(&) = dn?(¢,k); (6)
when a = 4k?, b = —4(1 + k?),and ¢ = 4,then  z(§) = ns?(¢,k); (7)
when a = —4k?, b = 4(—1+ 2k?),and ¢ = —4(—1 + k?),then  z(¢) = nc?(&k);  (8)
when a = —4,b = —(—2 + k?),and ¢ = 4(—1 + k?), then z(§) = nd?(¢,k); )
when a = 4,b = —4(—2 + k?),and ¢ = —4(—1 + k?) then z(§) = sc?(§,k); (10)
when a = 4,b = 4(—1 + 2k?), and ¢ = 4k?(—1 + k?), then z(§) = sd?(§, k); (11)
when a = —4(—1+ k?),b = —4(—2 + k?), and c = 4, then z(§) = cs?(§,k); (12)
when a = 4,b = —4(—1+ k?), and ¢ = 4k?, then z(§) = cd?(§, k); (13)
when a = 4k?(—1 + k?)?,b = 4(—1 + k?), and c = 4 then z(§) = ds?(¢,k); (14)
when a = 4k?,b = —4(1 + k?), and c = 4 then z(&) = dc?(§,k); (15)
when a = —(1 — k2)2,b = 2(1 + k2), and ¢ = —1, then z(§) = (ken(&, k) + dn (&, k)?; (16)
whena =1,b = —=2(—1+ 2k?),andc=1,then  z(&) = (ns(&, k) * cs(§,k))?; (17)
whena =1—k? b =2(1+k?),and c =1 — k?, then z(§) = (nc(é, k) + sc(§,k))?; (18)
when a = k*,b = 2(—=2 + k?),and ¢ = 1, then z(¢) = (ns(&, k) + ds(é,k))?%; (19)
when a = k?,b = 2(—2 + k?),and ¢ = k?, then z(§) = (sn(&, k) + icn(&, k))?,
and z(§) = (V1—kzsfzr(l;,§f)fcn(§,k))2’ (20)
whena = 1,b = —2(—1 + 2k?), and ¢ = 1, then z(§) = (ksn(&, k) + idn(§,k))?; 21
whena =1—k%b = 2(1+k?),and ¢ = 1 — k2, then z(§) = ui’jl% 22)
whena = —1+ k% b = 2(1 + k), and ¢ = —1 + k2, then z(§) = &% 23)
when a = k?,b = 2(-2+ k?),and c = k% then  z(§) = %; (24)
whena = 1,b = —2(—1 + 2k?), and ¢ = 1, then z(§) = % 25)
whena =1,b = 2(—2+ k?),and c = k* then z(§) = (1:;% (26)
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Substituting the expression (2) and Eq. (3) into Eq. (1), and setting the coefficients of 2 &G =

0,1,2,....) and x5z'\/az(§) + bz2(§) + cz3(§) (s = 0,1;i = 0,1,....) to zero yield an over-determined
partial differential equation set about a, b, go(t), g1(t),p(t), q(t). We obtain the solutions of the
equation set with the help of Mathematica. And then substituting each of solutions of the equation set,
i.e. each of the expressions (4)- (26) into the expression (2) respectively, we obbtain the Jacobi elliptic
function-like solutions, the soliton-like solutions and the triangle function wave solution to the nonlinear
evolution equation (1).

3. The first kind of KdV equation with the variable coefficients

U + a(Huu, + B()Uyy, = 0. 27
In Eq. (27), assume that
u(x, t) = go(t) + 91(O)z(p(t)x + q(t)). (28)

Substituting Eq. (3) and the expression (28) into Eq. (27), and setting the coefficients of z/ (§)(j = 0,1),

and x5z (&)\/az(&) + bz2(§) + cz3(€) (s = 0,1;i = 0,1) to zero yields the following over-determined
partial differential equation set.
go(t) =0,
9:(t) =0,
g1(Op'(1) =0,
gi(Op®a(t) + 3cg, (OP* (L) =0,
g1 (Do (OP(Oa(t) + bg: (P (OL(E) + g1(D)q'(t) = 0,

With the aid of Mathematica, we have the following solutions of the equation set:

9o(t) = g0, 9:(t) = g1, p(t) = p,a(t) = _3’%% q(t) = = [ (gopa(t) + bp°B(£)dt,

where g, g1, p, b and c are constants, g, # 0, and g; # 0.
Substituting the expressions (29) together with the expressions (4) — (26) into the expression (28)

respectively, we obtain Jacobi ellipti function-like exact solution of Eq (27) as follows:

U1 (x,t) = go + g1sn*(& k); Uy 1(x, t) = go + g1cn® (€, k);
us1(x,t) = go + g1dn*(§, k); Us1(x,t) = go + gins*(§,k);
us1(x,t) = go + ginc?(§, k); U1 (%, 1) = go + g1nd?*(§, k);
Uz 1 (%, 1) = go + g15¢*(§, k); ug1(x,t) = go + g15d*(§, k);
Ug1 (X, 1) = go + g1¢5%(§, K); U0,1(%,t) = go + g1cd* (€, k);
Ui1,1(%,t) = go + g1ds*(§, k); U121 (%, t) = go + g1dc?(§ k);
U31(xt) = go + g1(ken(§, k) £ dn(§, k)% U141(x, 1) = go + g1(ns(§, k) £ cs(§, k))?;
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Uss1(x,t) = go + g1(nc(§, k) £ sc(&, k)%

Ui7,1 (%, 1) = go + g1(sn(§, k) & ien(€, k)%

Ui 1 (%X, 1) = go + g1(ksn(&, k) + idn(, k))?;

gldnz (E'k) .
(L+ksn(§ k)2’

gisn* (k)
(1£en(§ k)2’

Uzp,1(X, ) = o

Upsz,1 (X, 1) = go

Uie1 (X, t) = go + g1(ns(&, k) £ ds(&, k)%

gldnz (f'k)
(Vi-KZsn(§k)ten(€ k)2’

gicn?(Eh) |
(1+sn(§.k)?’

gak?sn? (k) |
(1tdn(§ k)’

gisn?(Ek)
(1+dn(§,k)?’

Usg1 (X, ) = go +
Upo,1 (X, 1) = o
U1 (X, ) = go

Upg 1 (X, 1) = go

where & = px — [(gopa(t) + bp3B(t))dt, p, b, c, g, are constants, g, * 0, and g, # 0,

The Jacobi elliptic functio-like exact solutions above degenerate into the following soliton-like solutions.

where k = 1;

w,(x,t) = go + g1 tank® (px — [ (gopa(t) — 8p*B()dt), (a(t) =

2 060) = g, + 8, sech? ( pr— [ (g, p()=4p* pora ) (a(®) =

3 (1) = g, + g, coth®  pr—[ (g, pa()=8p* fltra ). (a(®) =

g1 sech®(px—[(gopa(t)+4p3B(t)dt)

Uy (X, ) = go +

tanh®(px—[(gopa(t)+4p3p(t)dt)) ’

—12p2B(t)) ]
g1 ’
12p2B(t)) ]
g1 ’
—12p2B(t)) ]
g1 ’

( a(t) = 12p2B(t>)’

g1

U2 (x,€) = go + 491 sech* (px — [ (gopa(t) + 4p*B()de), (a(t) = 2LY);

Ug2(X, ) = go +

91

91(1 £ sech(px — [ (gopa(t) — 2p*B(t))dt))* <a ) = —3p2ﬁ(t)>
tanh®(px — [ (gopa(t) — 2p*B())dt)

Uz,(x,t) = go + g1 (tanh(px — [(gopa(t) — 2p*B(t)) dt)

+isech(px — [ (gopa(t) — 2p°f()dt)?, (a(t) =

g tanh? ( px— [ (g,pa~2p" B0 )

)

-3p? ﬁ(t))

ug,(x,1) =g, +

(1J_rsech(px—j (gopa(t)—2p3,5(t)dt))

( (t) = —3p? ﬁ(t))

The Jacobi ellipti function-like exact solutions above degenerate into the following triangle function

solutions. where k = 0

w56, t) = go + g1 esc2(px — [ (gopa(t) — 4p3B()dr), (a(t) =
y3(x,£) = go + g1 sec?(px — [ (gopa(t) — 4p*p(0)de) , (a(t) =

Us5(x,£) = go + g1 tan?(px — [ (gopa(t) — 8p*B(1)dt), (a(t) =

—12p2B(t))
g1

12p2B(t))

g1

12p23(t))

g1
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a5 (x,£) = go + g1 cot?(px — [(gopar(t) — 8p3B(B)dt), (a(t) =
us3(x, t) = go + ga(csc(px — [(gopa(t) + 2p°B(t))dt)) £ (px — [(gopa(t) + 2p°B(t)dt))?,

(a(t) = =220

12p1ﬁ(t))

g6, 1) = 9o + g1 (secpx = [ (gupa(®) + 20*B(e)de) £ (px - [ (gupa®) + 20*p(©)d0))
(a(t) —3p 1ﬁ(t))

75(x,t) = go + 491 csc2 (px — [ (gopa(t) — 4p*B(t)ar), (a(t) =
91 cos?(px—[(gopa(t)+2p3B(t))dt) ( () = —3p? ﬁ(t))
(1xsin(px—[(gopa(t)+2p3B(t)dt))?’ 91

_ g1 sin?(px—[(gopa(t)+2p3B(t))dt) _ —3p2B(1)
Uo3(%, ) = Go (1iCOS(PX—f(goPa(t)+2p3ﬁ(t)dt))z'( © == )

—3p 13 (t))

ugs(x,t) = go +

4. Discussion and Conclusions :
In this chapter, we introduce a method using an auxiliary equation with a function transformation to find
new solutions for first kind KdV equation with variable coefficients. These solutions include exact
solutions using Jacobi elliptic functions, degenerate soliton-like solutions, and triangular function wave
solutions. The specific solutions are:

Uy 1 (X, t)~uz 1 (X, 1),
U5 (X60) ~ 1y, (1), uz 5 (X, 1), Us (X, 1), Up 3 (X, 1);
u1,4(x’ 1)~ Uy 4o Uy 5 (x,1) ~ Uys (x,1), Uz (X, ), us5(X, t), Uy (X, t);
Uy, (x,1) ~ Uy, (x,1), us g(x, t), Uz o (X, t).
Uy g(x, t)~Uz (X, t), uz g(x, t),
Additionally, we have discovered some new solutions in this paper. This new method is important for

constructing exact solutions using Jacobi elliptic functions for nonlinear evolution equations with

variable coefficients.
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