A Deep Dive into Phytophthora infestans: Late Blight in Tomato Production

Mr. D.Suresh¹, Dr. T.Sree Kala²

¹ Ph.D. Research Scholar, Department of Computer Science, VISTAS, Chennai, India.

² Associate Professor, Department of Computer Science VISTAS, Chennai, India.

Abstract

Tomato crop is a major crop used in almost in every home. There are many buy products are available with adding tomatoes has basic ingredients. The formers in India are facing many problems in yielding tomatoes profitability. The economy of the formers and Indian economy also depends upon proper yielding of healthy tomato crop. Many infections and diseases causes sever damages to proper growth of tomato plant. Many diseases such as Early Blight, Leaf Mold, Septoria Leaf Spot and Target Spot and basic infections found on tomato crop. Virus infections such as Mosaic Virus and Yellow Leaf Curl some of viral attacks founds on tomato leaf. The problem discussed may affect the proper growth of tomato crop and results in major yielding. The research work focuses on early detection of tomato infection and giving a proper solution based on the historical data collected from previous infected crops. This paper gives an idea about various infection found on tomato plant and it also evaluate various methodologies and algorithm available for simulation. This detailed review shows the significant of using machine learning algorithms to find infection on tomato crop.

Keywords: Early Blight, Septoria Leaf Spot, Leaf Mold and Target Spot.

Introduction

Indian agriculture field basically depends upon two major crops namely onions and tomatoes. Experts in India determine the growth of the economy by estimating these crops growth and price. Almost every families live in India consumes these crops in daily bases. Sub sequence food items produced with these basic crops as raw materials are also developed day by day. The basic commodities used in restaurants, households and hotels are ketchup, puree and juice, which is also products of tomatoes. The products are very useful in enhancing the taste of dishes made. The fresh tomato for cooking is replaced with tomato puree in most of the places.

There are many infections causes Sevier damage in growth of tomatoes.Damping Off, Bacterial stem, Bacterial leaf spot, Septoria leaf spot, Early blight, Mosaic, Bacterial wilt, Tomato spotted wilt disease, Leaf curl, Fusarium wilt and fruit canker are few among infections.The symptoms found on tomato plans are very difficult to analyses for farmers in early stage. There are many systematic approaches solves those problem by implementing early disease identification process. Image processing and data mining plays a major role in identifying severity level and inspecting the type of disease affects tomato plant. The data used for research work basically collected from farmers and disease types were categorized accordingly based on the type and severity levels. Necessary treatment and solutions are also inspected with agricultural officers are relevant disease types collected from various farm land. Many researches uses these image processing technique for producing a computerized applications, which generate a proper solution to relevant infections occurs in tomato crop.

The early identification processes are very much useful for farmers to give necessary solutions for infected crops. The process carried out in systematic approach should follow new technologies with latest disease updates in efficient way. Even though there are many systematic approaches are available, there is lot of problems in finding the results and giving the solutions accurately. Machin learning algorithms and neural network algorithms are used successfully to accelerate the disease finding ability with effective technological approaches.

This review paper gives a detailed view of approaches used in the field of image processing and Machin learning in finding the affected parts of tomatoes. The focus of the paper is not limited in using various approaches in finding the best algorithm for early identification of tomato infections with high accuracy. It also gives a detailed view of various researches work on tomato disease identification using various approaches.

Literature Review

The largest producer of potato plant in South American fields faces Late blight disease, which is known to be native for Late blight. The Late blight disease are notified in United States in the early 1843, which shows Sevier infections almost east coastal areas of North America [1]. The disease symptoms are observed in Belgium in 1845 and shows major impact in spreading throughout Scotland, Switzerland, France, Britain and many neighboring countries [2]. The spread of late blight throughout European countries make impact in downfall of economy and yielding of crops. The disease infections have started to damage potato plant every years from 1845 [3] and makes damage not only to potato plant, it also started to show its symptoms to other crops as well. Late blight A2 mating type of phytophthora infestans was found in Mexico, later the same type is reported in Switzerland in 1981 [4].

The spread of the disease might have happen due to migrations of potato pathogen from Mexico to other parts of Europe and the export of potato started from 1977 onwards [5]. The type A2 infections found in England are reported to be the potatoes imported from Egypt [6]. Most of Asian countries faced the same phytophthora infestans type A2during those period, which are not recorded properly due to technologies available on those days [7],[8],[9],[10],[11]. The type A2 disease infections are found in Africa [12], Europe [13 -16] and South America [17], [18] are also not

recorded properly. The demonstrations of phytophthora infestans Genetic analysis conducted by panglobal training systems 1980 [19] suggested that the type A2 worldwide spreading are not because occurs from disease originated county and not due mutations.

The type A2 infections transmission occurs around most of the parts in world are not only happened because of mutations or migrations, it may also happened due to the germination process happed between infected plant and uninfected plant [20]. The fungal effects found in the period of fertilization may have the possibility of phytophthora infestans in potatoes and tomatoes crop in Europe and North America [21-23]. The research work carried out in Japan found that the infections happening during the fertilization process of the plant has not occurred due to the factor of crop offspring [24]. Some research works carried in the United States have found few difference and variations in A2 type of phytophthora infestans found in potatoes. The finding of the research has globally made an impact on learning few different type of phytophthora infestans, such as US-8 (A2, the oldlineage), US-21 (A2, tomato-specific type), US-22 (A2,isolated from tomato and potato), US-23 (A1, isolated from tomato and potato) and US-24 (A2, potato-specific type) [25]. The survey conducted in Ireland found the decrease in percentage of disease from 70 percentage to 16 percentage in 13_A2 type infection. Few other infections 5_A1 and 8_A1 shows significant difference mutations, but it has not changed the structure of 6_A1 type infections.

The research work carried out in Britain show significant increase in genotype 6_A1, which is very different from other research work carried in the field of genotype [26]. The Chinese research conducted on domestic genotypes also shows some resemblances with the work carried out in research work conducted in Britain [27]. The came genotype research based on A1, US-1 and SIB-1 also reviled in Russia [28], which shows much more similarities in phytophthora infestans. The similarities in result of identifying phytophthora infestans symptoms all around the areas of Taiwan in later 2006 also shows significant similarities with other research work carried out in stating the phytophthora infestans severity level in potatoes and tomatoes.

Material and methods used in identifying phytophthora infestans

The research finding carried out in different parts of the world is different from each other in using materials and methods. Some researcher has used genotype difference in finding the disease affected in potatoes and tomatoes. Few researcher works on the image processing techniques and machine learning algorithms in finding out the best way of identification process. This particular session made an attempt to inspect the materials and methods used in the phytophthora infestans research.

Author	Year	Title	Methodology	Description
Hung K. Doan, et., al [29]	2016	Survey of Molds in Californ ia Processi ng Tomato es	Fisher's exact test and the SAS/STAT	The associations at $\alpha = 0.10$ level have independent possibilities of incidence, which is taken for two pairwise types at the same time and failure occurs for null hypothesis.
Gentle 2003[30]	2003	Random number generati on and Monte Carlo methods	Monte Carlo simulation (Assay Design)	More than 10 fungal types are taken for 5 LFD immunochromatographicMAbs assay for performing conceptual multistrip.The data collected in the research work uses these fundal types for sampling tomato to inspect the contaminations based on fundal affects. Stemphylium, Alternaria, Rhizopus,Aspergillus,Rhizoctonia ,Botrytis,Penicillium,Cladosporiu m,Geotrichum and Fusarium are the discussed fundal types for the study.
K. Möller., et., al[31]	2009	Populati on studies on Phytoph thora infestan s on potatoes and tomatoe s in southern German	 Polymerase Chain Reaction (PCR) is taken for Mitochondria 1 DNA haplotypes Research work uses mtDNA haplotype for classification process 	The collected isolated samples in 1995 from German almost has total 56 A1 type and only one A2 mating type. The collected isolated samples from 1999 has 72 isolates mating for A1 and only 12 mating type for A2.

Table 1: Existing methodologies in finding phytophthora infestans

		у		
		3		
J. Tumwine , H. D. Frinking& M. J. Jegerp[32]	2010	Tomato late blight (Phytop hthora infestan s) in Uganda	Compatibility test for Phytophthora infestans isolates	The samples collected from 10 different districts form Uganda classified based on the temperature, sunshine and rainfall are taken for identification of Tomato late blight. A1 and A2 mating type are found in the Oospores compatibility test.
Ha Tran., et., al[33]	2007	Role of the cyclic lipopept ide massetol ide A in biologic al control of Phytoph thora infestan s and in coloniza tion of tomato plants by Pseudo monas fluoresc ens	 ANOVA Wild -type SS101 Mutant 10.24 	The control measures taken for late blight are producting CLP surfactant massetolide A and versatile function in the ecology of stain Phytophthora infestans, which helps in giving additional support in measuring infections.
Reza Ghaffari., et., al[34]	2010	Early Detectio n of Diseases in Tomato Crops: An	Principal Component Analysis (PCA), Electronic Noses (ENs), K- Means clustering and Fuzzy C-Mean	Best means known as Electronic Noses was implemented for classifying diseased and healthy tomato plants. The classification rate can be increased with the use of ANN classification as enhanced strategy followed for different numbers of samples.

		Electron ic Nose and Intellige nt Systems Approac h	(FCM)	The Electronic Noses usage can be considered as cheaper way for making decision support in instrumentation used with sensor channels.
F.Z. Rekad., et., al[35]	2017	Charact erization of Phytoph thora infestan s populati ons in Northwe stern Algeria during 2008 to 2014	Simple Sequence Repeat Marker analysis	The type Algerian Phytophthora infestansisolations are selected with copied alleles continuously for each venue and gene diversity. MATLAB Software is used as a basic tool for determining the SSR data collected based on gene classification.
Andrea P. Zuluaga., et., al[36]	2016	Transcri ptional dynamic s of Phytoph thora infestan s during sequenti al stages of hemibio trophic infectio n of tomato	Macroscopic Observation, Microscopic Evaluation and Molecular Assessment are carried out for symptomatic leaves, Pathogen development and biotrophic/ necrotrophic development for Phytophthora infestans.	The comparisons are made for pathogen progresses from biotrophic to necrotrophic growth for plant are observed. The dynamic transcriptions for Phytophthora infestans affect are completed with pathogenicity during different stages of infections. The infections in each stage are calculated for further treatment stage.

The table 1 shows significant contributions made in identifying Phytophthora infestans among plants. The methodologies discussed in the existing papers follows scientific and genomics way for segregating the disease stage into different levels. Few research work focuses on using PCA and clustering technique for segmentation process and they even use some machine learning algorithms. The classifications algorithms such as K-mean, ANN and FCM are also used for classifying diseases affected parts of plant from healthy parts.

Author	Year	Title	Algorithm	Parameters/	Description
			/ Software	Measurements	
				Used	
E. Mine	2006	Antim	Analysis	Duncan's	The pairs of means
Soylu.,		icrobi	of	Multiple	differences are
et.,		al	Variance	Range test	calculated with the usage of
al[37]		activit	(ANOVA)	(DMRT)	Duncan's Multiple Range
		ies of	,		Test (DMRT). The gathered
		the			result from the
		essenti			earch work stages that the
		al oils			essential oils
		of			extracted or produced from
		variou			the plant are used as
		s			protection and gradually
		plants			control the Phytophthora
		agains			infestans affects in plant.
		t			The study also suggests that
		tomat			instead of using synthetic
		o late			fungicides, essential oils can
		blight			be replaced for development
		diseas			of new antifungal
		e			compounds in disease
		agent			affected parts of leaves.
		Phyto			-
		phthor			
		a			
		infesta			
		ns			
	0 001		abaa		
Yuan-Y	2021	Functi	SPSS	T-Test and	The competitions for
uan Zha		on	statistical	Duncan's	treatment were given for
ng., et.,		identif	software	Multiple	Phytophthora infestans using
al[38]		cation	22.0	Range Test	three different techniques
		of mi	(United	and Statistical	such as t-test, Duncan's
		R394	States).	evaluation	Multiple Range and
		in tom			Statistical evaluation with
		ato			setting P<0.05. The result
		resista			collected form the
		nce			experiments states that the
		to Phy			expressions of JA related

Measurements used in identifications of phytophthorainfestans Table 2: Measurements used in phytophthora infestans

S.A. Miller., et., al[39] Yushi Luan., et., all111[40]	2015	tophth ora infesta ns A syste ms approa ch to tomat o diseas e manag ement MiR1 918 enhan ces	was	expectation ii) Length for	genes are frequently changes in various levels of LCR with the usage of miR394. The greenhouse samples of each leaves have resemblances of Botrytis cinerea. Continues simulations separate the pathogen from plant debris with the use of greenhouse test. The conducted tests are evaluated using data conversion process. The research work was conducted with ME as 3, Length of complementarity scoring as 20, 200, target
		tomat o sensiti vity to Phyto phthor a infesta ns infecti on	performed using psRNATa rget	complemen tarity iii) Target accessibilit y iv) Range of central translationa l	accessibility to unpair the target site as 25, Flanking regions target accessibility as 13bp downstream and 17bp for upstream and range for mismatch leading inhibition as 9.The analyzing stage was carried out with SPSS and collected data was expressed as mean for each unique experiment. Duncan's Multiple Range test is conducted with setting range P<0.05 for experiment.
Alessan dro Piro ndi., et., al[41]	2016	Post- infecti on activit y of fun gicide s agains t Phyt ophth	Arcsine Square Root transforma tion and SAS software version 9	TheDIFF option for the command LSMEANS and means were separated based on significance at α <0.05	The post infections of LB activities on CAA are measured for better understanding the results of treatment. The results collected from the fields are mostly for developing a solution in minimizing the risk factor of infections.

		ora infesta ns on to mato (Solan um lycope rsicum L.)			
M. Zhang., et., al[42]	2010	Spectr al discri minati on of Phyto phthor a infesta ns infecti on on tomat oes based on princi pal compo nent and cluster analys es	Remote sensing technolog y,	that the first eigenvector accounted for 58.73% of the variance of the original data set and the second for 35.51%. All of the other eigenvectors only accounted for the remaining 5.76%.	The PCA segmentation used in the research work is very useful in extracting the necessary disease affected parts from healthy parts. The result suggested that applying proper pest control solutions cannot cure the disease, but it can reduce the probability change of spreading the disease to neighbor plant.
[43]Y. Cohen., et., al	1996	Oospo re Produ ction of Phyto phthor a infesta ns in Potato	Duncan new multiple range test	The number of oospores was counted at each of two 8- mm2 sites per leaflet.	The clustering technique of grouping identical data based on oospore count are taken for analyzing mating type ratio. The analyzing stage uses Duncan New Multiple Range test for establishing significant difference in probability level.

and	
Tomat	
0	
Leave	
8	

Table 2 shows various research work carried out in exploring the treatment and necessary identification process followed in Phytophthora infestans. The algorithms and parameters used for evaluation process are also every clearly explained. The researchers are common in using Duncan New Multiple Range test for finding mating type ratio and PCA technique for segmentation of diseased plant from healthy plant.

Similarities between Potato and Tomato Phytophthora infestans

The research work carried out in different parts of the work are common in examining Phytophthora infestans affected crops. Some of the work focuses on examining cauliflower, beans, potatoes and tomatoes in common. Among many research work it is states that the Phytophthora infestans affected plant are identified as potato and tomatoes. The measurement and algorithms used in examining the severity level of Phytophthora infestans among different plans are also similar, which makes an idea for researchers to use similar methodologies for identifying disease affected parts of tomatoes and potatoes.

Potato	Tomato
The infections are first found in potato (as	The Phytophthora infestans found in
per record given from various survey works)	Tomatoes are considered to be transmitted
	disease from potatoes
The DNA and RNA Extractions methods	Few researches have used new techniques in
followed in finding Late Blight-Infected	extracting DNA and RNA process. (e.g.: sly-
areas of potato are tested under same	and pi-miR1918)
conditions.	
Most of the research work conducted for	Most of the research work conducted for
potato infections are carried out with Duncan	tomatoes infections is not limited in using
new multiple range test	Duncan new multiple range tests. They also
	used PCA and Clustering techniques for
	enhancing the accuracy of predictions.
Disease identification process followed for	Disease identification process uses some of
potatoes have used basic classification	classification algorithms such as K-Means

Table 3: Potato and TomatoPhytophthora infestans

algorithmic technique such as PCA for clustering and Fuzzy C-Mean (FCM) categorization.

Conclusion

Phytophthora infestans on tomato and potato crops are mostly affecting proper yield and gives serious problems to formers. This research paper gives review on showing significant different between tomato and potato infection and it also discusses techniques used for DNA and RNA processing between tomato infection and potato infection. DUNDAG new multiple range test, PCA (Principle Component Analysis) and clustering techniques followed for enhancing the accuracy of prediction this also reviewed and detailed. This disease identification process using different classification techniques such as K-means, Clustering, and Fuzzy C-means discussed in this paper. Gives an idea for identification process followed for tomato infections. This parameters and measurements used for evaluation process by different researchers and used algorithms or software's for evaluation process are also discussed with proper solutions.

References

- Peterson PD, Campbell CL, Griffith CS (1992) James E. Teschemacher and the cause and management of potato blight in the United States. Plant Dis 76:754–756
- [2]. Robertson NF (1991) The challenge of Phytophthora infestans. In: Ingram DS, Williams PH (eds) Advances in plant pathology, vol 7., Phytophthora infestans, the cause of late blight of potatoAcademicPress, London, pp 1–30
- [3]. Sakai R (1961) Studies on the nutritional physiology of Phytophthora infestans (Mont.) de Bary (in Japanese). Hokkaido Natl AgricExp Stn Rep 57:1–158
- [4]. Hohl HR, Iselin K (1984) Strains of Phytophthora infestans from Switzerland with A2 mating type behavior. Trans Br Mycol Soc83:529–530
- [5]. Fry WE, Goodwin SB, Dyer AT, Matuszak JM, Drenth A, Tooley PW, Sujkowski LS, Koh YJ, Cohen BA, Spielman LJ, Deahl KL, Inglis DA, Sandlan KP (1993) Historical and recent migrations of Phytophthora infestans: chronology, pathways, and implications.Plant Dis 77:653–661

- [6]. Shaw DS, Fyfe AM, Hibberd PG, Abdel-Sattar MA (1985) Occurrence of the rare A2 mating type of Phytophthora infestans on imported Egyptian potatoes and production of sexual progeny with A1 mating types from the UK. PlantPathol 34:552–556
- [7]. Koh YJ, Goodwin SB, Dyer AT, Cohen BA, Ogoshi A, Sato N, Fry WE (1994) Migrations and displacements of Phytophthora infestans populations in east Asian countries. Phytopathology84:922–927
- [8]. Mosa AA, Kato M, Sato N, Kobayashi K, Ogoshi A (1989) Occurrence of the A2 mating type of Phytophthora infestans on potato in Japan. Ann Phytopathol Soc Japan 55:615–620
- [9]. Mosa AA, Kobayashi K, Ogoshi A, Kato M, Sato N (1990) Distribution and characterization of mating types of Phytophthora infestans in Japan. In: Proceedings of the 3rd international conference on plant protection in the tropics. Malaysian PlantProtection Society, Malaysia, pp 215–219
- [10]. Nishimura R, Sato K, Lee WH, Singh UP, Chang T, Suryaningsih E, Suwonakenee S, Lumyong P, Chamswarng C, Tan W, Shrestha SK, Kato M, Fujii N, Akino S, Kondo N, Kobayashi K, Ogoshi A (1999) Distribution of Phytophthora infestans populations inseven Asian countries. Ann Phytopathol Soc Japan 65:163–170
- [11]. Ogoshi A, Kobayashi K, Mosa AA, Sato N (1988) Compatibility types of Phytophthora infestans isolates in Hokkaido. In: Abstracts of papers, 5th international congress of plant pathology,Kyoto, p 182
- [12]. Sedegui M, Carroll RB, Morehart AL, Evans TA, Kim SH, Lakhdar R, Arifi A (2000) Genetic structure of the Phytophthora infestanspopulation in Morocco. Plant Dis 84:173–176
- [13]. Lebreton L, Andrivon D (1998) French isolates of Phytophthora infestans from potato and tomato differ in phenotype andgenotype. Eur J Plant Pathol 104:583–594
- [14]. Malcolmson JF (1985) Phytophthora infestans A2 compatibility typerecorded in Great Britain. Trans Br Mycol Soc 85:531
- [15]. Scho"ber B, Rullich G (1986) Oosporenbildung von Phytophthorainfestans (Mont.) de Bary. Potato Res 29:395–398
- [16]. Tantius PH, Fyfe AM, Shaw DS, Shattock RC (1986) Occurrence of the A2 mating type and self-fertile isolates of Phytophthorainfestans in England and Wales. Plant Pathol 35:578–581

- [17]. Deahl KL, Goth RW, Young R, Sinden SL, Gallegly ME (1990) Occurrence of the A2 mating type of Phytophthora infestans in potato fields in the United States and Canada (abstract).Phytopathology 80:670
- [18]. Oyarzun PJ, Ordon es ME, Forbes GA, Fry WE (1997) First report of Phytophthora infestans A2 mating type in Ecuador. Plant Dis81:311
- [19]. Goodwin SB, Drenth A (1997) Origin of the A2 mating type of Phytophthora infestans outside Mexico. Phytopathology87:992–999
- [20]. Go"tz E (1990) Neue Aspektebei der Beka"mpfung der Phytophthora in Kartoffeln (German with English summary). Kartoffelbau41:224–226
- [21]. Shattock RC, Shaw DS, Fyfe AM, Dunn JR, Loney KH, Shattock JA (1990) Phenotypes of Phytophthora infestans collected in England and Wales from 1985 to 1988: mating type, response to metalaxyl and isoenzyme analysis. Plant Pathol39:242–248
- [22]. Chycoski CI, Punja ZK (1996) Characteristics of populations of Phytophthora infestans from potato in British Columbia and other regions of Canada during 1993 to 1995. Plant Dis 80:579–589
- [23]. Kato M, Sato A, Takahashi K (1993) Oospores of Phytophthora infestans found in the experimental field of potato (Abstract inJapanese). Ann Phytopathol Soc Japan 59:770
- [24]. Deahl KL (2012) Characterization of Phytophthora infestans populations in North America from the 2009–2011 late blight epidemics. In: Schepers HTAM (ed) PPO-Special ReportNo.15, Lelystad, pp 57–58
- [25]. Cooke LR, Kildea S, Mehenni-Ciz J, Quinn L, Little G, Hutton F, Perez FM, Deahl KL, Griffin D (2012) Ongoing changes in the Irish potato late blight population. In: Schepers HTAM (ed)PPO-Special Report No. 15, Lelystad, pp 75–80.