

The Multiverse of MIPS: Reviewing Across the Implementations

Nandi Sree Harshitha1, Krishna Teja Murikipudi1, S. Gopikrishna2, A.V. Ananthalakshmi3
1, 1 B.Tech. student, Dept. of E.C.E, Puducherry Technological University, Puducherry, India

2 Scientist ‘F’, Research Centre Imarat, D.R.D.O., Vignyanakancha, Hyderabad, India
3 Associate professor, Dept. of E.C.E, Puducherry Technological University, Puducherry, India

Abstract—Originally developed in the early

1980s, the MIPS architecture continues to have a

significant impact on modern computing. By

examining different implementations of MIPS such

as single-cycle, multi-cycle, pipeline, MIPS32, and

MIPS64, this literature review provides a

comprehensive overview of MIPS processors. A

thorough discussion of pipelines, parallel

processing, instruction formats, register

conventions, instruction types, and various stages

in the pipeline is presented in this paper,

highlighting the role of hazard handling in a

pipelined processor.

Keywords—Hazard Handling, Instruction

Formats, MIPS, Multi-Cycle, Pipeline, Processor,

Single-Cycle

1. Introduction

MIPS (Microprocessor without Interlocked

Pipeline Stages) is a RISC-based processor with a

load store architecture and 32 general-purpose

registers. Register $0 is hardwired to zero. MIPS

has four instruction sets (MIPS I through IV).

Compared to their predecessors, the latest MIPS

instruction sets have improved functionality and

complexity. These instructions can be executed

using single-cycle, multi-cycle, or pipeline

methods. It is the goal of pipelining to maximize

resource utilization, but it also produces hazards,

which will be discussed in greater detail in the

upcoming sections of this paper. There is dedicated

hardware between pipeline stages in the

“Interlocked pipeline stages” model to detect

hazards. MIPS, as its name suggests, lacks such

hardware for simplicity and faster execution. Thus,

hazard handling is the responsibility of the

program. Failing to do so might result in

inaccurate outputs or undesired behaviour.

2. Pipelining

It is essential to examine the single-cycle and

multi-cycle implementations of an MIPS processor

to appreciate the impact of pipelining. In a single-

cycle implementation, any instruction executes in

one clock cycle, the CPI being 1. Although it

sounds like a great idea, it is inefficient because

the clock cycle length is fixed for all kinds of

instructions and is determined by the longest

possible path in the processor. The overall

performance of such implementation might be

poor, given its long clock cycle. Pipelining is a

technique of overlapping stages of multiple

instructions to achieve parallel processing. Fetch,

Decode, Execute, Memory Access, and Write

Back are the stages of a five-stage pipeline model.

When Instruction0 is in the decode stage,

Instruction1 is fetched simultaneously, so the fetch

stage of Instruction1 overlaps with the decode

stage of Instruction0. Similarly, the stages of the

pipeline overlap for multiple instructions, as

illustrated in Figure 1. The pipeline is faster

because it executes multiple instructions in

parallel, but the time taken to process a single

instruction is still the same. The effects of pipeline

are better appreciated when there are multitudinous

instructions to be executed, under ideal conditions

a five-stage pipeline processor is five times faster

than a single-cycle processor.

Figure 1. Five-Stage Pipeline in MIPS [1]

In a multi-cycle implementation, each instruction

takes multiple clock cycles, executing one

instruction at any time. It is faster than the single-

cycle model because of the variable execution time

of the multi-cycle model, which only goes through

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 6 2024

Page No: 515

the necessary stages. The pipeline is faster and

ensures maximum resource utilization, but it poses

the constant risk of encountering hazards; the

details of it are in Section 4. [1]

3. Overview of MIPS

The MIPS architecture has 32 general-purpose

registers and a load-store architecture, register

conventions of the MIPS improve the efficiency of

execution. The registers are divided into groups to

suit various functionalities of MIPS, as shown in

Figure 2.

Figure 2. MIPS Register Conventions [1]

Register 1, called $at, is reserved for the

assembler and registers 26–27, called $k0–$k1, are

reserved for the operating system. The original

version of MIPS is of 32-bit (MIPS32), five-stage

pipeline and later it is extended to 64-bit

(MIPS64), there are studies that suggest the usage

of six-stage pipeline, 16-bits and other variants to

gain added advantages for specific applications. A

descriptive analysis of the same is discussed in this

paper. [1]

3.1. 16-bit MIPS

The term "16-bit MIPS" refers to a MIPS

processor with a 16-bit data bus and a processor

that primarily operates on 16-bit data. In MIPS16,

each instruction is 16 bits wide. This compact

instruction format allows for efficient use of

memory and reduced instruction fetch and decode

overhead. Input and output operations are

performed by accessing memory-mapped I/O

devices. This means that special memory addresses

are assigned to I/O devices, and reading from or

writing to these addresses’ triggers communication

with the respective devices. MIPS16 instructions

primarily include LOAD and STORE operations

for accessing memory. LOAD instructions transfer

data from memory to registers, while STORE

instructions transfer data from registers to memory.

Instruction sets are divided into 4 types:

▪ Arithmetic: These arithmetic instructions

manipulate data stored in registers.

▪ Logical operations: Logical operations such as

AND, OR, and XOR are provided to

manipulate binary data at the bit level.

▪ Data Transfer: Load and Store instructions

facilitate data transfer between memory and

registers. These operations are essential for

accessing variables, arrays, and other data

structures.

▪ Branch and Control: MIPS16 instructions

include branching operations for altering the

program flow based on conditions. This

includes unconditional jumps, conditional

branches, subroutine calls, and returns.

3.2. Instruction Word Format

3.2.1. Register Type (R TYPE): The MIPS16

instruction R format comprises a 5-bit opcode field

followed by three 3-bit fields representing source

operand registers (Rs1 and Rs2) and a destination

register (Rd). This structure allows for efficient

encoding of instructions while providing flexibility

in specifying source and destination operands for

arithmetic and logical operations.

Op-code Rs Rt Rd Reserved

(5) (3) (3) (3) (2)

Figure 3. R Type Instruction Format [2]

Let the ADD instruction be, ADD $t0 $t1 $t2, the

operands are:

• Rs1 = $t1

• Rs2 = $t2

• Rd = $t0

3.2.2. Immediate Type (I TYPE): The MIPS16

immediate instruction format comprises a 5-bit

opcode field followed by two 3-bit fields

representing source operand register (Rs) and

destination register (Rt), and a 5-bit immediate

field containing the constant value. This structure

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 6 2024

Page No: 516

allows for efficient encoding of instructions

involving immediate values, providing flexibility

in specifying operands for arithmetic and logical

operations.

Op-code Rs Rt Immediate

(5) (3) (3) (5)

Figure 4. I Type Instruction Format [2]
Suppose we have an ADDI instruction, ADDI

$t0 $t1 1010, the operands are:

• Rs = $t0

• Rt = $t1

• Immediate value = 10

3.2.3. Jump Type (J TYPE): The MIPS16 jump

instruction format comprises a 5-bit opcode field

followed by an 11-bit field representing the jump

target address. This structure allows for efficient

encoding of instructions involving control transfer

operations, providing flexibility in altering the

program flow within the limited 16-bit instruction

format of MIPS16.

Op-code Address

(5) (11)

Figure 5. J Type Instruction Format [2]
3.3. MIPS16 Architecture

Figure 6. MIPS16 Architecture [4]
Jump instructions, which alter the program flow

by transferring control to a different part of the

code, are typically handled separately. When a

jump instruction is encountered, the pipeline may

need to be flushed or stalled to ensure that the

correct instruction sequence is followed.

The pipeline allows multiple instructions to be

processed simultaneously, with different

instructions at different stages of execution. As

each instruction progresses through the pipeline

stages, subsequent instructions can enter the

pipeline, overlapping their execution with previous

instructions. This overlapping of instructions helps

shorten the overall execution time of the program

by maximizing processor utilization and

throughput. Each instruction is executed in a single

cycle. This means that each phase of the pipeline

takes one clock cycle to complete before the next

phase begins. [2][3][4]

3.4. 32-bit MIPS

In a 32-bit MIPS processor, instructions are

typically encoded as 32-bit binary words. The

processor operates on 32-bit data at a time and

uses a set of 32-bit general-purpose registers for

temporary storage and computation. In a 3-stage

pipeline, instructions are executed in three stages:

Fetch, Decode, and Execute.

1) Fetch Stage: In this stage, the processor fetches

the instruction from memory. The program counter

(PC) holds the address of the next instruction to be

fetched. The instruction is fetched from memory

using this address and loaded into the instruction

register (IR).

2) Decode Stage: The fetched instruction is

decoded in this stage. The opcode (operation code)

and operands are identified. The control signals for

the execution unit are generated based on the

opcode.

3) Execute Stage: In this stage, the decoded

instruction is executed. This may involve

arithmetic or logical operations, data transfers

between registers, or branching to a different

instruction address based on a conditional branch

instruction. [6]

Husainali S. Bhimani et al., (2016) simulated and

synthesized using Xilinx ISE, followed by static

timing and power analysis. The project was

developed for the FFG1157 package, utilizing the

Virtex 7 FPGA with the XC7VX330T device.

With frequency and clock period of 310.878 MHz

and 3.217 ns. [6]

Priyavrat Bhardwaj et al., 2016, simulated a 32-

bit model that has the architecture and operation of

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 6 2024

Page No: 517

a 5-stage pipelined processor with separate phases

for instruction fetch (IF), decode (ID), execution

(EX), data memory (MEM), and write back (WB).

1) Instruction Fetch (IF): In this phase,

instructions are fetched from the program memory

using the program counter (PC) as a pointer. The

fetched instruction is typically stored in an

instruction buffer or pipeline register to await

decoding in the next stage.

2) Decode (ID): In this phase, the fetched

instruction is decoded to determine the operation

to be performed and the operands involved.

Operand values are typically read from registers or

immediate fields in the instruction, preparing them

for execution in the next stage.

3) Execution (EX): This phase executes the

decoded instruction. For arithmetic or logical

instructions, this involves performing the specified

operation on the operand values.

For control transfer instructions like jumps or

branches, the target address calculation may occur

in this phase.

4) Data Memory (MEM): In this phase, memory

access operations such as loads and stores are

performed. If the instruction involves accessing

data memory, the address calculation is completed,

and data is either read from or written to memory.

5) Write Back (WB): The final phase involves

writing back the results of the executed instruction

to the appropriate register file. This phase updates

the register file with the result of arithmetic or

logical operations or the data read from memory. [8]

P.Indira et al., 2019, developed the design that

minimizes power consumption while optimizing

layout area and Power-Delay Product (PDP), Low

Power Unit in this design employs 28nm high-

performance low-power process technology,

prioritizing performance while balancing speed,

delay, area, and power. It integrates intelligent

clock gating for further power reduction without

compromising bandwidth. [5]

Pipeline Registers feature a novel implicit pulse-

triggered flip-flop design, addressing transistor

stacking issues with gated Pull-up control in this

model, enhancing power efficiency in pipelining

operations. These auxiliary components are used in

this processor. This project utilizes the Virtex-7

FPGA for implementing pipelined operations,

offering superior performance compared to other

7-series devices like Artix7 and Kintex7. It also

supports compatibility with the Virtex6 FPGA

series. The pipelining operates at a frequency of

420.028 MHz, with a minimum operation time of

1.385ns and a maximum path delay of 1.143ns.

Comparative analysis is developed. [5]

Figure 7. Five-Stage MIPS32 Architecture [1]

3.5. 32-bit Instruction Format

3.5.1. Register Type: The instruction format

depicted in Figure 8 is Register (R) Type. It

utilizes the MSB 6 bits for the Opcode. Following

the Opcode, there are 15 bits allocated for the three

registers: Rs, Rt, and Rd, where Rs and Rt are the

source registers, and Rd is the target register. The

subsequent 5 bits indicate the shift amount for

moving bits. The remaining 6 bits denote the

function field, specifying the operation to be

executed on the registers.

Op-code Rs Rt Rd Shamt Funct

(6) (5) (5) (5) (5) (6)

Figure 8. R Type 32-bit Instruction Format
Its primary application lies in executing

mathematical operations like addition and

subtraction, exemplified by "add Rd, Rs, Rt",

where Rd receives the signed addition of Rs and Rt

3.5.2. Immediate Type: Immediate (I) type

instructions, feature four fields: a 6-bit Opcode for

selecting the instruction type, followed by the

storage of data in the Source Register (Rs) and

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 6 2024

Page No: 518

Target Register (Rt), each occupying 5 bits. The

final field, spanning 16 bits, represents the

Address/Immediate Value, containing immediate

data.

Op-code Rs Rt Immediate

(6) (5) (5) (16)

Figure 9. I Type 32-bit Instruction Format
It demonstrates the dichotomy of Rt register

which can be used both as a source and a

destination. The immediate value received by sign

extend is represented by the last 16-bits which is

then sent to the Arithmetic and Logical Unit for

playing out the desired function.

3.5.3. Jump Type: In this arrangement type, there

are two fields: a 6-bit Opcode used to select the

instruction format, and a 26-bit Ending or Target

address determining the branch destination. the 32-

bit jump (J) address is derived by appending the

last 4 bits of PC + 4 to the left-shifted 26-bit

instruction value fetched from MEM. Furthermore,

it facilitates jumping to the destination while

disregarding any alternate instructions.

Op-code Address

(6) (26)

Figure 10. J Type 32-bit Instruction Format
Soumya Murthy et.al., 2015 proposed DLX

architecture with pipelined control in a RISC core

in this research paper. RISC processors typically

exhibit high power consumption, which can be

mitigated through complex fabrication processes.

However, implementing low-power versions is less

complex if addressed at the front end. This paper

employs HDL modification techniques to reduce

dynamic power, particularly targeting IO power

consumption for optimization. The proposed

power reduction focuses on algorithm-level

modifications, acknowledging the limitation in

reducing leakage power. The overall power

optimization achieved from HDL technique is

13.33%. [7]

Rohit J et.al., 2017 designed MIPS 32 BIT 5

stage pipelined model which resulted in achieving

an on-chip power consumption of 0.09W. The

Opcode (instructions) were generated using the

MARS compiler and then extracted for use in the

instruction memory. Subsequently, this design was

implemented on the Artix-7 FPGA using the

Xilinx Vivado platform. [11]

TriptiMahajan et.al., 2019 developed a Low

Power 32-bit multicycle MIPS processor using

Xilinx ISE and Altera Quartus EDA tools. [9]

Takahito Hayashi et.al., 2019 proposed an EPIC-

type processor based on the MIPS architecture,

featuring instruction code compression, branch

prediction, immediate expansion, and multi-core

capabilities. The effective utilization of these

features enhances instruction-level parallelism.

The proposed processor outperforms the basic

pipeline processor by 1.9 times in speed, despite a

slight increase in program size. Additionally, it

reduces NOP instructions compared to VLIW

processors. The paper evaluates the effectiveness

of the "parallel bit" and suggests further

examination of other processor bits in future

research. [10]

3.6. 64-bit MIPS

A 64-bit MIPS processor refers to MIPS

architecture that utilizes 64-bit data paths and

registers. This architecture supports processing and

addressing data in 64-bit chunks, enabling higher

performance and larger memory addressing

capabilities compared to processors with narrower

data paths, such as 32-bit or 16-bit processors.

Macha Ashok Kumar et.al., 2018 designed 64-bit

Microprocessor without Interlocked Pipeline

Stages (MIPS) based RISC processor and executed

successfully with 5 stage pipelining in Xilinx

kintex7 14.3 Tool. Execution of multiple

instructions at a time in a single clock cycle is

achieved in this paper. [12]

3.7. 64-bit 6-Stage Pipeline MIPS

This design has 6 pipeline stages which enhances

its performance compared to 5-stage pipeline

architecture. The 6 stages are:

1) Instruction Fetch: Instructions are fetched from

the instruction cache (I-Cache) based on the

program counter (PC) address.

2) Instruction Decode: The fetched instruction

code is decoded by a Decoder Unit, dividing the

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 6 2024

Page No: 519

64-bit instruction into multiple parts based on the

operation.

3) Operand Fetch: Operands are retrieved from

registers or memory, with registers being preferred

for their efficiency. Indirect addressing modes

benefit from registers, enhancing speed and ease of

locating data addresses.

4) Data Cache: Data retrieval utilizes the data

cache memory unit. In MIPS architecture, only

load and store instructions are used for read and

write operations, allowing ALU results to be stored

directly in data memory.

5) Execute: Arithmetic and logic operations are

performed on the operands using the Arithmetic

and Logic Unit (ALU).

6) Write Back: The execution result is written

back to registers and memory. [13]

4. Hazard Handling Unit

The Hazard Handling Unit is responsible for the

efficient execution of the instructions by detecting

and mitigating hazards. Hazards are the problems

in the pipeline that might lead to incorrect

computational outputs or imprecise instruction

flow, jeopardizing the accuracy and the efficiency

of the pipeline and the processor.

The MIPS architecture is prone to three hazards,

namely data, control, and structural hazards. Data

hazards occur when there is a dependency between

two instructions. Dependency is a situation where

the register read by an instruction contains an

outdated value due to the execution of previous

instructions. Hence, the operation is carried out

with an outdated value, leading to incorrect results.

Dependency resolution and data forwarding is used

to take care of this hazard. Control hazards occur

when an instruction leads to a jump or branching

to an effective address. The Program Counter (PC)

is updated with the effective address only after the

execution stage of the current instruction, fetching

two instructions that are not supposed to execute,

leading to incorrect results and might cause

deadlock situations. Flushing of instructions,

bubble and stall are used to take care of this

hazard. Structural hazards are caused by resource

conflict when two operations require the usage of

the same limited resource, which are handled by

using techniques like renaming, and resource

duplication. The memory is subdivided into

instruction memory and data memory to address

this. The memory is written in the first half and

read in the second half of the clock cycle, as

illustrated in Figure 1.

5. Issues In Pipelining

In pipelining, overall completion time decreases,

but individual stage delays can increase due to

issues like pipeline latency, uneven stage

balancing, and varying device delays. These

challenges impact pipeline efficiency and

necessitate careful management for optimal

performance. [5]

6. Future Scope and Conclusion

The MIPS architecture possesses enormous

potential for development. Future advancements

may involve techniques that enhance branch

prediction mechanisms, cache optimization,

enhanced pipeline efficiency, and dynamic power

management. Power efficiency improves by

employing techniques like clock gating. Recently,

there has been a transition towards dual pipeline

architectures that can double the throughput,

optimize instruction scheduling, allocate resources,

and handle hazards to unleash the full potential of

parallel execution. Hence, we explored various

implementations of the MIPS architecture, the

intricacies of pipelining, and the instruction sets.

The journey through the multiverse of MIPS is

incomplete without addressing hazards, they are

the black holes of the processor world. They

spread throughout the multiverse and when you

pass too close by one, the gravity of it might trap

you in an eternal loop. Likewise, hazards can

jeopardize a pipelined processor in no time.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 6 2024

Page No: 520

REFERENCES

[1] Patterson, David A., and John L. Hennessy. “Computer

Organization and Design ARM Edition: The Hardware

Software Interface”. Morgan Kaufmann, 2016.

[2] Sagar Bhavsar, Akhil Rao, Abhishek Sen, Rohan Joshi,

“A 16-bit MIPS Based Instruction Set Architecture for

RISC Processor”, International Journal of Scientific

and Research Publications, Volume 3, Issue 4, April

2013 | ISSN 2250-3153.

[3] Kanaka Sai Hemanth Dogga 1, Chand Basha Shaik 2,

Sreemukhi Muddusetty, “Design of Instruction Set

Architecture Based 16-bit MIPS Architecture with

Pipeline Stages”, International Research Journal of

Engineering and Technology (IRJET), Volume: 08

Issue: 07, July 2021.

[4] Rakesh C R, Chetan S, J S Baligar, “Design of 16 Bit

RISC Processor and Implementation Using MIPS

Technique”, Scholars Journal of Engineering and

Technology, ISSN 2347-9523 (Print) | ISSN 2321-

435X.

[5] P. Indira, Dr. Ved Vyas Dwivedi, Dr. M. Kamaraju,

“Verilog Implementation of a MIPS RISC 32-bit

Pipelined Processor Architecture”, IOSR Journal of

Electronics and Communication Engineering (IOSR-

JECE) e-ISSN: 2278-2834, p- ISSN: 2278-

8735.Volume 14, Issue 1, Ver. I (Jan.-Feb. 2019), PP

31-40.

[6] Husainali S. Bhimani, Changa Hitesh N. Patel, Changa

Abhishek A. Davda, “Design of 32-bit 3-Stage

Pipelined Processor Based on MIPS in Verilog HDL

and Implementation on FPGA Virtex7”, International

Journal of Applied Information Systems (IJAIS) –

ISSN: 2249-0868 Foundation of Computer Science

FCS, New York, USA Volume 10 – No.9, May 2016.

[7] Soumya Murthy, Usha Verma, “FPGA Based

Implementation of Power Optimization of 32-bit RISC

Core using DLX Architecture”, International

Conference on Computing Communication Control

and Automation, DOI 10.1109/ICCUBEA.2015.191,

2015.

[8] Priyavrat Bhardwaj, Siddharth Murugesan, “Design &

Simulation of A 32-bit RISC Based MIPS Processor

Using Verilog”, IJRET: International Journal of

Research in Engineering and Technology, volume: 05

Issue: 11 | Nov-2016.

[9] TriptiMahajan, Prof. Nikhil P. Wyawahare, “Review of

Low Power Multicycle MIPS Processor Using HDL”,

Journal of Emerging Technologies and Innovative

Research (JETIR), April 2019, Volume 6, Issue 4.

[10] Takahito Hayashi, Akinori Kanasug,” A Design of

EPIC Type Processor Based on MIPS Architecture”,

International Society of Artificial Life and Robotics

(ISAROB), 2019.

[11] Rohit J, Raghavendra M, “Implementation of 32-bit

RISC processors without interlocked Pipelining on

Artix-7 FPGA Board”, Proceedings of Second

International Conference on Circuits, Controls and

Communications, 2017.

[12] Macha Ashok Kumar, Mr. T. Krishna Moorthy,

“Design and Analysis Of 64-bit MIPS Processor”,

Journal of Emerging Technologies and Innovative

Research (JETIR) May 2018, Volume 5, Issue 5.

[13] P. Indira, M. Kamaraju, “Design and Implementation of

6-Stage 64-bit MIPS Pipelined Architecture”,

International Journal of Engineering and Advanced

Technology (IJEAT) ISSN: 2249-8958 (Online),

Volume-8 Issue-6S2, August 2019.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 6 2024

Page No: 521

