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Abstract—Originally developed in the early 

1980s, the MIPS architecture continues to have a 

significant impact on modern computing. By 

examining different implementations of MIPS such 

as single-cycle, multi-cycle, pipeline, MIPS32, and 

MIPS64, this literature review provides a 

comprehensive overview of MIPS processors.  A 

thorough discussion of pipelines, parallel 

processing, instruction formats, register 

conventions, instruction types, and various stages 

in the pipeline is presented in this paper, 

highlighting the role of hazard handling in a 

pipelined processor. 
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1. Introduction 

 

MIPS (Microprocessor without Interlocked 

Pipeline Stages) is a RISC-based processor with a 

load store architecture and 32 general-purpose 

registers. Register $0 is hardwired to zero. MIPS 

has four instruction sets (MIPS I through IV). 

Compared to their predecessors, the latest MIPS 

instruction sets have improved functionality and 

complexity. These instructions can be executed 

using single-cycle, multi-cycle, or pipeline 

methods. It is the goal of pipelining to maximize 

resource utilization, but it also produces hazards, 

which will be discussed in greater detail in the 

upcoming sections of this paper. There is dedicated 

hardware between pipeline stages in the 

“Interlocked pipeline stages” model to detect 

hazards. MIPS, as its name suggests, lacks such 

hardware for simplicity and faster execution. Thus, 

hazard handling is the responsibility of the 

program. Failing to do so might result in 

inaccurate outputs or undesired behaviour. 

 

2. Pipelining 
 

It is essential to examine the single-cycle and 

multi-cycle implementations of an MIPS processor 

to appreciate the impact of pipelining. In a single-

cycle implementation, any instruction executes in 

one clock cycle, the CPI being 1. Although it 

sounds like a great idea, it is inefficient because 

the clock cycle length is fixed for all kinds of 

instructions and is determined by the longest 

possible path in the processor. The overall 

performance of such implementation might be 

poor, given its long clock cycle. Pipelining is a 

technique of overlapping stages of multiple 

instructions to achieve parallel processing. Fetch, 

Decode, Execute, Memory Access, and Write 

Back are the stages of a five-stage pipeline model. 

When Instruction0 is in the decode stage, 

Instruction1 is fetched simultaneously, so the fetch 

stage of Instruction1 overlaps with the decode 

stage of Instruction0. Similarly, the stages of the 

pipeline overlap for multiple instructions, as 

illustrated in Figure 1. The pipeline is faster 

because it executes multiple instructions in 

parallel, but the time taken to process a single 

instruction is still the same. The effects of pipeline 

are better appreciated when there are multitudinous 

instructions to be executed, under ideal conditions 

a five-stage pipeline processor is five times faster 

than a single-cycle processor.  

Figure 1. Five-Stage Pipeline in MIPS [1] 
 

In a multi-cycle implementation, each instruction 

takes multiple clock cycles, executing one 

instruction at any time. It is faster than the single-

cycle model because of the variable execution time 

of the multi-cycle model, which only goes through 
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the necessary stages. The pipeline is faster and 

ensures maximum resource utilization, but it poses 

the constant risk of encountering hazards; the 

details of it are in Section 4. [1] 

 

3. Overview of MIPS 
 

The MIPS architecture has 32 general-purpose 

registers and a load-store architecture, register 

conventions of the MIPS improve the efficiency of 

execution. The registers are divided into groups to 

suit various functionalities of MIPS, as shown in 

Figure 2.  

 

                

Figure 2. MIPS Register Conventions [1] 

 

Register 1, called $at, is reserved for the 

assembler and registers 26–27, called $k0–$k1, are 

reserved for the operating system. The original 

version of MIPS is of 32-bit (MIPS32), five-stage 

pipeline and later it is extended to 64-bit 

(MIPS64), there are studies that suggest the usage 

of six-stage pipeline, 16-bits and other variants to 

gain added advantages for specific applications. A 

descriptive analysis of the same is discussed in this 

paper. [1] 

 

3.1.  16-bit MIPS 

 

The term "16-bit MIPS" refers to a MIPS 

processor with a 16-bit data bus and a processor 

that primarily operates on 16-bit data. In MIPS16, 

each instruction is 16 bits wide. This compact 

instruction format allows for efficient use of 

memory and reduced instruction fetch and decode 

overhead. Input and output operations are 

performed by accessing memory-mapped I/O 

devices. This means that special memory addresses 

are assigned to I/O devices, and reading from or 

writing to these addresses’ triggers communication 

with the respective devices. MIPS16 instructions 

primarily include LOAD and STORE operations 

for accessing memory. LOAD instructions transfer 

data from memory to registers, while STORE 

instructions transfer data from registers to memory. 

Instruction sets are divided into 4 types: 

▪ Arithmetic: These arithmetic instructions 

manipulate data stored in registers. 

▪ Logical operations: Logical operations such as 

AND, OR, and XOR are provided to 

manipulate binary data at the bit level. 

▪ Data Transfer: Load and Store instructions 

facilitate data transfer between memory and 

registers. These operations are essential for 

accessing variables, arrays, and other data 

structures. 

▪ Branch and Control: MIPS16 instructions 

include branching operations for altering the 

program flow based on conditions. This 

includes unconditional jumps, conditional 

branches, subroutine calls, and returns. 

 

3.2. Instruction Word Format 

3.2.1. Register Type (R TYPE): The MIPS16 

instruction R format comprises a 5-bit opcode field 

followed by three 3-bit fields representing source 

operand registers (Rs1 and Rs2) and a destination 

register (Rd). This structure allows for efficient 

encoding of instructions while providing flexibility 

in specifying source and destination operands for 

arithmetic and logical operations. 

 

Op-code Rs Rt Rd Reserved 

(5) (3) (3) (3) (2) 

Figure 3. R Type Instruction Format [2] 

Let the ADD instruction be, ADD $t0 $t1 $t2, the 

operands are: 

• Rs1 = $t1 

• Rs2 = $t2 

• Rd = $t0 

 

3.2.2. Immediate Type (I TYPE): The MIPS16 

immediate instruction format comprises a 5-bit 

opcode field followed by two 3-bit fields 

representing source operand register (Rs) and 

destination register (Rt), and a 5-bit immediate 

field containing the constant value. This structure 
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allows for efficient encoding of instructions 

involving immediate values, providing flexibility 

in specifying operands for arithmetic and logical 

operations. 

Op-code Rs Rt Immediate 

(5) (3) (3) (5) 

Figure 4. I Type Instruction Format [2] 
Suppose we have an ADDI instruction, ADDI 

$t0 $t1 1010, the operands are: 

• Rs = $t0 

• Rt = $t1 

• Immediate value = 10 

 

3.2.3.  Jump Type (J TYPE): The MIPS16 jump 

instruction format comprises a 5-bit opcode field 

followed by an 11-bit field representing the jump 

target address. This structure allows for efficient 

encoding of instructions involving control transfer 

operations, providing flexibility in altering the 

program flow within the limited 16-bit instruction 

format of MIPS16. 

 

Op-code Address 

(5) (11) 

Figure 5. J Type Instruction Format [2] 
3.3.  MIPS16 Architecture 

Figure 6. MIPS16 Architecture [4] 
Jump instructions, which alter the program flow 

by transferring control to a different part of the 

code, are typically handled separately. When a 

jump instruction is encountered, the pipeline may 

need to be flushed or stalled to ensure that the 

correct instruction sequence is followed.   

The pipeline allows multiple instructions to be 

processed simultaneously, with different 

instructions at different stages of execution. As 

each instruction progresses through the pipeline 

stages, subsequent instructions can enter the 

pipeline, overlapping their execution with previous 

instructions. This overlapping of instructions helps 

shorten the overall execution time of the program 

by maximizing processor utilization and 

throughput. Each instruction is executed in a single 

cycle. This means that each phase of the pipeline 

takes one clock cycle to complete before the next 

phase begins. [2][3][4] 

3.4.  32-bit MIPS 

In a 32-bit MIPS processor, instructions are 

typically encoded as 32-bit binary words. The 

processor operates on 32-bit data at a time and 

uses a set of 32-bit general-purpose registers for 

temporary storage and computation. In a 3-stage 

pipeline, instructions are executed in three stages: 

Fetch, Decode, and Execute. 

1)  Fetch Stage: In this stage, the processor fetches 

the instruction from memory. The program counter 

(PC) holds the address of the next instruction to be 

fetched. The instruction is fetched from memory 

using this address and loaded into the instruction 

register (IR). 

2)  Decode Stage: The fetched instruction is 

decoded in this stage. The opcode (operation code) 

and operands are identified. The control signals for 

the execution unit are generated based on the 

opcode. 

3)  Execute Stage: In this stage, the decoded 

instruction is executed. This may involve 

arithmetic or logical operations, data transfers 

between registers, or branching to a different 

instruction address based on a conditional branch 

instruction. [6] 

Husainali S. Bhimani et al., (2016) simulated and 

synthesized using Xilinx ISE, followed by static 

timing and power analysis. The project was 

developed for the FFG1157 package, utilizing the 

Virtex 7 FPGA with the XC7VX330T device. 

With frequency and clock period of 310.878 MHz 

and 3.217 ns. [6] 

Priyavrat Bhardwaj et al., 2016, simulated a 32-

bit model that has the architecture and operation of 
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a 5-stage pipelined processor with separate phases 

for instruction fetch (IF), decode (ID), execution 

(EX), data memory (MEM), and write back (WB). 

 

1)  Instruction Fetch (IF):  In this phase, 

instructions are fetched from the program memory 

using the program counter (PC) as a pointer. The 

fetched instruction is typically stored in an 

instruction buffer or pipeline register to await 

decoding in the next stage. 

 

2)  Decode (ID): In this phase, the fetched 

instruction is decoded to determine the operation 

to be performed and the operands involved. 

Operand values are typically read from registers or 

immediate fields in the instruction, preparing them 

for execution in the next stage. 

 

3)  Execution (EX): This phase executes the 

decoded instruction. For arithmetic or logical 

instructions, this involves performing the specified 

operation on the operand values. 

For control transfer instructions like jumps or 

branches, the target address calculation may occur 

in this phase. 

 

4)  Data Memory (MEM): In this phase, memory 

access operations such as loads and stores are 

performed. If the instruction involves accessing 

data memory, the address calculation is completed, 

and data is either read from or written to memory. 

 

5)  Write Back (WB): The final phase involves 

writing back the results of the executed instruction 

to the appropriate register file. This phase updates 

the register file with the result of arithmetic or 

logical operations or the data read from memory. [8] 

 

P.Indira et al., 2019, developed the design that 

minimizes power consumption while optimizing 

layout area and Power-Delay Product (PDP), Low 

Power Unit in this design employs 28nm high-

performance low-power process technology, 

prioritizing performance while balancing speed, 

delay, area, and power. It integrates intelligent 

clock gating for further power reduction without 

compromising bandwidth. [5] 

Pipeline Registers feature a novel implicit pulse-

triggered flip-flop design, addressing transistor 

stacking issues with gated Pull-up control in this 

model, enhancing power efficiency in pipelining 

operations. These auxiliary components are used in 

this processor. This project utilizes the Virtex-7 

FPGA for implementing pipelined operations, 

offering superior performance compared to other 

7-series devices like Artix7 and Kintex7. It also 

supports compatibility with the Virtex6 FPGA 

series. The pipelining operates at a frequency of 

420.028 MHz, with a minimum operation time of 

1.385ns and a maximum path delay of 1.143ns. 

Comparative analysis is developed. [5] 

Figure 7. Five-Stage MIPS32 Architecture [1] 
 

3.5.  32-bit Instruction Format 

 

3.5.1.  Register Type: The instruction format 

depicted in Figure 8 is Register (R) Type. It 

utilizes the MSB 6 bits for the Opcode. Following 

the Opcode, there are 15 bits allocated for the three 

registers: Rs, Rt, and Rd, where Rs and Rt are the 

source registers, and Rd is the target register. The 

subsequent 5 bits indicate the shift amount for 

moving bits. The remaining 6 bits denote the 

function field, specifying the operation to be 

executed on the registers. 

 

Op-code Rs Rt Rd Shamt Funct 

(6) (5) (5) (5) (5) (6) 

Figure 8. R Type 32-bit Instruction Format 
Its primary application lies in executing 

mathematical operations like addition and 

subtraction, exemplified by "add Rd, Rs, Rt", 

where Rd receives the signed addition of Rs and Rt 

 

3.5.2.  Immediate Type: Immediate (I) type 

instructions, feature four fields: a 6-bit Opcode for 

selecting the instruction type, followed by the 

storage of data in the Source Register (Rs) and 
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Target Register (Rt), each occupying 5 bits. The 

final field, spanning 16 bits, represents the 

Address/Immediate Value, containing immediate 

data. 

 

Op-code Rs Rt Immediate 

(6) (5) (5) (16) 

Figure 9. I Type 32-bit Instruction Format 
It demonstrates the dichotomy of Rt register 

which can be used both as a source and a 

destination. The immediate value received by sign 

extend is represented by the last 16-bits which is 

then sent to the Arithmetic and Logical Unit for 

playing out the desired function. 

 

3.5.3.  Jump Type: In this arrangement type, there 

are two fields: a 6-bit Opcode used to select the 

instruction format, and a 26-bit Ending or Target 

address determining the branch destination. the 32-

bit jump (J) address is derived by appending the 

last 4 bits of PC + 4 to the left-shifted 26-bit 

instruction value fetched from MEM. Furthermore, 

it facilitates jumping to the destination while 

disregarding any alternate instructions. 

 

Op-code Address 

(6) (26) 

Figure 10. J Type 32-bit Instruction Format 
Soumya Murthy et.al., 2015 proposed DLX 

architecture with pipelined control in a RISC core 

in this research paper. RISC processors typically 

exhibit high power consumption, which can be 

mitigated through complex fabrication processes. 

However, implementing low-power versions is less 

complex if addressed at the front end. This paper 

employs HDL modification techniques to reduce 

dynamic power, particularly targeting IO power 

consumption for optimization. The proposed 

power reduction focuses on algorithm-level 

modifications, acknowledging the limitation in 

reducing leakage power. The overall power 

optimization achieved from HDL technique is 

13.33%. [7] 

 

Rohit J et.al., 2017 designed MIPS 32 BIT 5 

stage pipelined model which resulted in achieving 

an on-chip power consumption of 0.09W. The 

Opcode (instructions) were generated using the 

MARS compiler and then extracted for use in the 

instruction memory. Subsequently, this design was 

implemented on the Artix-7 FPGA using the 

Xilinx Vivado platform. [11] 

 

TriptiMahajan et.al., 2019 developed a Low 

Power 32-bit multicycle MIPS processor using 

Xilinx ISE and Altera Quartus EDA tools. [9] 

 

Takahito Hayashi et.al., 2019 proposed an EPIC-

type processor based on the MIPS architecture, 

featuring instruction code compression, branch 

prediction, immediate expansion, and multi-core 

capabilities. The effective utilization of these 

features enhances instruction-level parallelism. 

The proposed processor outperforms the basic 

pipeline processor by 1.9 times in speed, despite a 

slight increase in program size. Additionally, it 

reduces NOP instructions compared to VLIW 

processors. The paper evaluates the effectiveness 

of the "parallel bit" and suggests further 

examination of other processor bits in future 

research. [10] 

 

3.6.  64-bit MIPS 

A 64-bit MIPS processor refers to MIPS 

architecture that utilizes 64-bit data paths and 

registers. This architecture supports processing and 

addressing data in 64-bit chunks, enabling higher 

performance and larger memory addressing 

capabilities compared to processors with narrower 

data paths, such as 32-bit or 16-bit processors. 

Macha Ashok Kumar et.al., 2018 designed 64-bit 

Microprocessor without Interlocked Pipeline 

Stages (MIPS) based RISC processor and executed 

successfully with 5 stage pipelining in Xilinx 

kintex7 14.3 Tool. Execution of multiple 

instructions at a time in a single clock cycle is 

achieved in this paper. [12] 

 

3.7. 64-bit 6-Stage Pipeline MIPS 

This design has 6 pipeline stages which enhances 

its performance compared to 5-stage pipeline 

architecture. The 6 stages are: 

1)  Instruction Fetch: Instructions are fetched from 

the instruction cache (I-Cache) based on the 

program counter (PC) address. 

2)  Instruction Decode: The fetched instruction 

code is decoded by a Decoder Unit, dividing the 
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64-bit instruction into multiple parts based on the 

operation. 

3) Operand Fetch: Operands are retrieved from 

registers or memory, with registers being preferred 

for their efficiency. Indirect addressing modes 

benefit from registers, enhancing speed and ease of 

locating data addresses. 

4)  Data Cache: Data retrieval utilizes the data 

cache memory unit. In MIPS architecture, only 

load and store instructions are used for read and 

write operations, allowing ALU results to be stored 

directly in data memory. 

5) Execute: Arithmetic and logic operations are 

performed on the operands using the Arithmetic 

and Logic Unit (ALU). 

 

6)  Write Back: The execution result is written 

back to registers and memory. [13] 

 

4. Hazard Handling Unit 
 

The Hazard Handling Unit is responsible for the 

efficient execution of the instructions by detecting 

and mitigating hazards. Hazards are the problems 

in the pipeline that might lead to incorrect 

computational outputs or imprecise instruction 

flow, jeopardizing the accuracy and the efficiency 

of the pipeline and the processor. 

The MIPS architecture is prone to three hazards, 

namely data, control, and structural hazards. Data 

hazards occur when there is a dependency between 

two instructions. Dependency is a situation where 

the register read by an instruction contains an 

outdated value due to the execution of previous 

instructions. Hence, the operation is carried out 

with an outdated value, leading to incorrect results. 

Dependency resolution and data forwarding is used 

to take care of this hazard. Control hazards occur 

when an instruction leads to a jump or branching 

to an effective address. The Program Counter (PC) 

is updated with the effective address only after the 

execution stage of the current instruction, fetching 

two instructions that are not supposed to execute, 

leading to incorrect results and might cause 

deadlock situations. Flushing of instructions, 

bubble and stall are used to take care of this 

hazard. Structural hazards are caused by resource 

conflict when two operations require the usage of 

the same limited resource, which are handled by 

using techniques like renaming, and resource 

duplication. The memory is subdivided into 

instruction memory and data memory to address 

this. The memory is written in the first half and 

read in the second half of the clock cycle, as 

illustrated in Figure 1. 

 

5. Issues In Pipelining 
 

In pipelining, overall completion time decreases, 

but individual stage delays can increase due to 

issues like pipeline latency, uneven stage 

balancing, and varying device delays. These 

challenges impact pipeline efficiency and 

necessitate careful management for optimal 

performance. [5] 

 

6. Future Scope and Conclusion 
 

The MIPS architecture possesses enormous 

potential for development. Future advancements 

may involve techniques that enhance branch 

prediction mechanisms, cache optimization, 

enhanced pipeline efficiency, and dynamic power 

management. Power efficiency improves by 

employing techniques like clock gating. Recently, 

there has been a transition towards dual pipeline 

architectures that can double the throughput, 

optimize instruction scheduling, allocate resources, 

and handle hazards to unleash the full potential of 

parallel execution. Hence, we explored various 

implementations of the MIPS architecture, the 

intricacies of pipelining, and the instruction sets. 

The journey through the multiverse of MIPS is 

incomplete without addressing hazards, they are 

the black holes of the processor world. They 

spread throughout the multiverse and when you 

pass too close by one, the gravity of it might trap 

you in an eternal loop. Likewise, hazards can 

jeopardize a pipelined processor in no time.
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