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Abstract

The mathematical model is considered here to investigate the effects of pathogen
on the orange trees in the presence of Herbivores. It is assumed in the model
that the orange trees are directly infected by pathogen, and adversely affected by
herbivores. The local and global stability analysis of all the equilibrium points of
the mathematical model are discussed. Through the analysis it has been derived
that the density of orange trees reduces in the presence of pathogen.
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1 Introduction

The rising number of invasive and aggressive pathogenic fungus is one of the biggest
risks to sustainable agricultural production and food security. They significantly
reduce crop output and quality [1, 2]. Citrus species are known to be infected by a
number of Phyllosticta species, which cause a variety of disease signs, including leaf
and fruit spots. P. citricarpa, which causes citrus black spot, a foliar and fruit disease,
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is one of the most significant species [3]. The most damaging Fungal citrus disease
is the citrus black spot caused by the fungus Phylosticta citricarpa which causes the
loss of yield in different countries of the world like Brazil, Australia etc.
The disease is worldwide distributed affecting all varieties of citrus within tropical and
sub-tropical citrus production regions, particularly in warm and humid climates. The
fungus forms latent infection in citrus tissues thereby causing disease and reducing
the yield [4–6]. Also another pathogen namely C. canker, one of the most devastating
biotic stressors to citrus, has a significant economic impact on the sector, limiting
trade and output. It affects all commercial citrus types as well as a wide range of
associated rutaceous species. In Northeast and Northwest Argentina, Xanthomonas
infection is considered an endemic disease, affecting up to 10% of commercial citrus
orchards [7, 8]. The presence of numerous diseases and pests in fruit, as well as
harvesting fruit at varying stages of maturity, are negative variables that limit fruit
marketability, reduce economic value and increase fruit waste [9]. The combined
impacts of herbivores and pathogenic fungus on tree growth are mediated by differ-
ences in tree species and other plant characteristics [10, 11]. The composition and
operation of plant communities are primarily influenced by herbivores and fungal dis-
eases. The diversity and functional traits of their host plants operate as a conduit for
the effects of herbivores and diseases. However, the combined effects of herbivory and
plant pathogen damages and their implications is yet to be addressed mathematically
[12]. The disease can be controlled by the virtue of fungicide decreasing outbreaks,
however, doing so, increases cost of output and may also damage ecosystem [14]. The
scientists [15] have developed a mathematical model for biological management and
tactics. They took into account three populations of orange trees, as well as disease
and beneficial fungi, and observed transcritical bifurcation in the model’s ultimate
behavior. Both farmers and applied ecologists have been notified of these findings.

In view of the research article [15] we have investigated the interaction dynamics
between orange trees and herbivores in the presence of pathogenic fungus induced
infectious disease. The goal of this work is to investigate and assess the effects of disease
on plant-herbivore dynamics using a mathematical model. We discuss the behavior
of a mathematical model consists of orange trees, Infected orange trees, Herbivores
and Pathogenic fungus. The theoretical results are supported by numerical results,
suggesting potential management tactics [15].

2 Model

In the proposed model, the interaction among the Orange tree, Infected orange tree,
Herbivore and the Pathogenic fungus is being studied and analyzed.
In view of the above assumptions, let T1 denotes the density of Orange tree, T2 denotes
the density of Infected orange trees, H denotes the Herbivore density, P denotes
the density of Pathogenic fungus. The following set of equations demonstrate the
mathematical model as:

dT1
dt

= Λ− d1T1 − a1T1P − a2T1H − β1T
2
1 (1)
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dT2
dt

= a1T1P − d2T2 − e1T2H − β2T
2
2 (2)

dH

dt
= k1a2T1H − d3H − k2e1T2H − β3H

2 (3)

dP

dt
= (

µmax s

ks + s
)P + k3d2T2 − c1P + k4d3H (4)

and the initial conditions are T1(0) > 0, T2(0) > 0, H(0) > 0 and P (0) > 0.
Monod equation: Jacques Monod created the monod equation in the 1940, and the
equation is m = µmaxs

ks+s where µ is the specific growth rate(1/time), µ is the culture’s
maximal specific growth rate (1/time), s is the substrate concentration (mass/volume)
required for the growth of Pathogenic fungus and ks is the half-saturation constant,
or affinity constant (mass/volume). Here, s is considered to be constant [15].

3 Table

Table 1: Parameters with their biological understandings / meanings.
Parameters Biological meanings
Λ constant Reproduction rate of orange trees
d1 Natural death rate of T1
a1 Infection rate
a2 The maximum value at which per capita reduction rate of orange

trees can attain due to H because of grazing
d2 Death rate of T2
e1 The maximum value at which per capita reduction rate of T2 can

occur due to H because of grazing.
k1 Conversion rate
d3 Natural death rate of H
k2 Death rate due to disease on account of eating of infected trees.
k3 Decomposition rate
c1 Natural death rate
k4 Decomposition coefficient
β1 Crowding effect of T1
β2 Crowding effect of T2
β3 Crowding effect of H
m = µmax s

ks+s Monod type of growth rate function

4 Boundedness of the model

Lemma 1 All the solutions of the model (1) - (4) will lie in the region

Ω =

{
(T1, T2, H, P ) ∈ R4

+ : 0 ≤ k1T1(t) + k2T2(t) +H(t) + P (t) ≤ k1Λ

θ1

}

where θ1 = min
{
(d1k1, d2(k2 − k3), d3(1− k4),

c1(ks+s)−µmaxs
ks+s )

}
, k2 > k3, 1 > k4,

c1(ks + s) > µmaxs.

3

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE N0: 569

user
Textbox



Proof: Now we consider a time dependent function:

W (t) = k1T1(t) + k2T2(t) +H(t) + P (t)

by using (1)-(4), we get

dW (t)

dt
≤ Λk1 − d1k1T1 − d2(k2 − k3)T2 − d3(1− k4)H −

(
c1(ks + s)− µmaxs

ks + s

)
P

dW (t)

dt
≤ Λk1 − θ(W )

where θ1 = min
{
(d1k1), d2(k2 − k3), d3(1− k4),

(
c1(ks+s)−µmaxs

ks+s

)}
, k2 > k3, 1 > k4,

k2 << k1, c1(ks + s) > µmaxs.
Now, on applying the theorem on differential inequalities, we obtain
0 < W (t) ≤W (0)e−θt + Λk1

θ as t→ ∞ then we get

0 ≤W (t) ≤ k1Λ

θ

Hence, all the solutions of the model are bounded in Ω.

5 Equilibria of the model

In this section, we discuss the existence of all possible equilibrium points of the model
(1)-(4). The model has at most two equilibrium points, namely E1(T1, T2, 0, P ) and
E2(T̃1, T̃2, H̃, P̃ ), which are discussed as follows:
Existence of E1: The first equilibrium point E1(T1, T2, 0, P ) which is also known as
boundary equilibrium point.
From (4), we get,

P =
k3d2T2
c1 −m

(5)

P > 0 if c1 > m, and put the value of (5) in (2), we get

T2 =
1

β2

(
a1k3d2T1
c1 −m

− d2

)
,
a1k3d2T1
c1 −m

> d2, c1 > m (6)

and put the value of (6) in (1), we get(
a21k

2
3d

2
2

β2(c1 −m)
+ β2

)
T1

2
+

(
d1 −

a1k3d
2
2c1

β2(c1 −m)
+

a1d2m

β2(c1 −m)

)
T1 − Λ = 0

T1 =

−π1 +
√

(π1)2 + 4Λ
(

a2
1k

2
3d

2
2

β2(c1−m) + β1

)
2
[

a2
1k

2
3d

2
2

β2(c1−m) + β1

] (7)
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P =
k23d

2
2a1T1

β2(c1 −m)2
− k3d

2
2

β2(c1 −m)
=

k3d
2
2

β2(c1 −m)

(
k3a1T1
c1 −m

− 1

)
if,

k3a1T1
c1 −m

> 1, k3a1T1 > (c1 −m), k3a1T1 +m > c1

where,

π1 = d1 −
a1k3d

2
2c1

β2(c1 −m)2
+

a1d
2
2mk3

β2(c1 −m)
.

Existence of E2: Now we will show the existence of the point E2, by the formation
of two isoclines F1(T̃1, T̃2) and F2(T̃1, T̃2) as follows:
From (3)

H̃ =
1

β3
[k1a2T̃1 − d3 + k2e1T̃2], (k1a2T̃1 + k2e1T̃2) > d3 (8)

from (1), (2) and (8), we get

F1(T̃1, T̃2) = β3Λ− β3d1T̃1 − β1β3T̃1
2 − d2β3T̃2 − β2β3T̃2

2 − a22k1T̃1
2
+ a2d3T̃1

− a2k2e1T̃1T̃2 − a2k1e1T̃1T̃2 + e1d3T̃2 − k2e
2
1T̃2

2

Also from (4)

P̃ =
k3d2T̃2 + k4d3H̃

c1 −m
, c1 > m (9)

Now putting the value of (8), (9) in (2), we get
F2(T̃1, T̃2) = β3a1d2k3T̃1T̃2 + (a1d3k4T̃1)(k1a2T̃1 − d3 + e1k2T̃2)− β3d2T̃2(c1 −m)

− e1T̃2(c1 −m)(k1a2T̃1 − d3 + k2e1T̃2)− β2β3T̃2
2
(c1 −m).

Now in order to show that T̃1 and T̃2 exist, the two isoclines F1(T̃1, T̃2) = 0 and
F2(T̃1, T̃2) = 0 must intersect, now we note that F2(0, 0) = 0.
=⇒ F2(T̃1, T̃2) passes through the origin and now we will show that F2(T̃1, T̃2) is
monotonically increasing as follows, now

dT̃1

dT̃2
=
β3d2ϕ+ e1ϕχ+ 2β2β3T̃2ϕ− β3a1k3d2T̃1 − a1k4d3k2e1T̃2

β3a1k3d2T̃2 + 2a1a2d3k4k1T̃1 + a1d3e1k2k4T̃2 − a1d23k4

where, χ = k1a2T̃1 + 2k2e1T̃2 − d3, ϕ = c1 −m.

=⇒ dT̃1

dT̃2
> 0 if the following condition are satisfied, i.e.,

1. β3d2(c1 − m) + e1(c1 − m)(k1a2T̃1) + e1(c1 − m)(2k2e1T̃2) + 2β2β3T̃2(c1 − m) >
e1(c1 −m)(−d3) + β3a1k3d2T̃1 + a1k4d3k2e1T̃2

2. β3a1k3d2T̃2 + 2a1a2d3k4k1T̃1 + a1d3e1k2k4T̃2 > a1d
2
3k4

Hence F2(T̃1, T̃2) is monotonically increasing and passing through origin, again for the
Isocline F1(T̃1, T̃2), we have F1(0, T̃2) = 0

T̃2 =
−(d2β3 − e1d3) +

√
(d2β3 − e1d3)2 + 4β2β2

3Λ + 4β3k2e21Λ

2(β2β3 + k2e21)
= ψ1(Say)
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and F1(T̃1, 0) = 0

T̃1 =
−(β3d1 − a2d3) +

√
(β3d1 − a2d3)2 + 4β1β2

3Λ + 4β3a22k1Λ

2(β1β3 + a22k1)
= ψ2(Say)

Also

dT̃1

dT̃2
= −

(
d2β3 + 2β2β3 + a2k2e1T̃1 + e1k1a2T̃1 + 2k2e

2
1T̃2 − e1d3

β3d1 + 2β1β3T̃1 + 2a22k1T̃1 + a2k2e1T̃2 + e1k1a2T̃2 − a2d3

)
< 0.

Hence F1(T̃1, T̃2) and F2(T̃1, T̃2) will intersect in the positive plane having the cor-
dinates for the isocline F1(T̃1, T̃2) as (0, T̃2) and (T̃1, 0). Therefore the intersect
equilibrium point is shown below by the intersection of F1(T̃1, T̃2) and F2(T̃1, T̃2).

Figure 1: Isocline graph for equilibrium point E2

6 Local stability of Model

6.1 Local stability for E1. The variational matrix about E1 is:

J1 =


−(d1 + a1Pa2H) 0 a2T1 −a1T1

a1P −(d2 + 2β2T2) −e1T2 a1T1
0 0 (k1a2T1 − d3 + k2e1T2) 0
0 k3d2 k4d3 m− c1


The characteristic equation of the above matrix is:

(λ3 +A1λ
2 +A2λ+A3)(−λ− (d3 − k1a2T1 − k2e1T2)) = 0
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one of the eigenvalues of the characteristic equation is λ1 = −(d3 − k1a2T1 − k2e1T2),
and the other three eigenvalues are given by the following equation:

λ3 +A1λ
2 +A2λ+A3 = 0 (10)

where,

A1 = (c1 + d2 + 2β2T2 + d1 + a1P + a2H −m),

A2 = (2β2c1T2 + c1d1 + c1a1P + c1a2H + d1d2 + a1d2P + a2d2H + 2β2d1T2

+2β2a1PT2 + 2β2a2HT2 − k3d2a1T1 + c1d2 − a2mH − a1mP − d1m

−2β2mT2 − d2m),

A3 = (c1d1d2 + a1c1d2P + a2c1d2H + 2β2c1d1T2 + 2β2c1a1PT2 + 2β2c1a2HT2

−d1d2m− a1d2mP − a2d2mH − 2β2d1mT2 − 2β2ma1T2P

−2β2ma2T2H − k3d2a1d1T1 − k3d2a1a2T1H).

According to Routh Hurwitz Criteria, E1 is locally stable if A1 > 0;A2 > 0;A3 > 0 and
A1A2 > A3 hold. From these expressions it is difficult to interpret the results in the eco-
logical terms, although all these conditions are numerically established by considering
a set of different parametric values.

6.2 Local stability for E2:

Theorem 1: In the region Ω, if the following conditions hold:

d2 + e1H > 2β2T2 (11)

d3 + 2β3H > k2e1T2 + k1a2T1 (12)

c1 > m (13)

J2 >
T1

k1H
(14)

J1 <
k2HJ2

T2
(15)

where,

J1 <
γ(d2 + e1H − 2β2T2)

9a21P
2 (16)

J2 <
(3k4d3)

2(3a1T1)
2

γ(d3 + 2β3H − k2e1T2 − a2k1T1)(c1 −m)2
(17)

J3 >
(3a1T1)

2

γ(c1 −m)
(18)

where, γ = (d1 + a1P + a2H), then E2(T1, T2, H, P ) will be locally asymptotically
stable.
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Proof: We first linearize the model about the equilibrium E2 by using the following
transformation:

T1 = T1 + n1

T1 = T2 + n2

H = H + n3

P = P + n4

where, n1, n2, n3, n4 are small perturbation around E2. Then we get the following
linearized the model,

dn1

dt
= −(d1 + a1P + a2H + 2β1T1)n1 − a2T1n3 − a1T1n4

dn2

dt
= a1Pn1 − (d2 + e1H − β2n2 − 2β2T2)n2 − e1T2n3 + a1T1n4

dn3

dt
= k1a2Hn1 + k2e1Hn2 + (k2e1T2 + k1a2T1 − d3 − 2β3H)n3

dn4

dt
= k3d2n2 + k4d3n3 + (m− c1)n4

Now consider the following positive definite function:

V =
n21
2

+
J1n

2
2

2
+
J2n

2
3

2
+
J3n

2
4

2
dV

dt
= n1

dn1
dt

+ J1n2
dn2

dt
+ J2n3

dn3

dt
+ J3n4

dn4
dt

dV

dt
= −[(d1 + a1P + a2H)n21 + (J1d2 + J1e1H − 2β2J1T2)n

2
2

+(J2d3 + 2J2β3H − J2k2e1T2 − J2k1a2T1)n
2
3 + (J3c1 − J3m)n24

−(J1a1P )n1n2 − (k1a2J2H − a2T1)n1n3 + (a1T1)n1n4

−(J2k2e1H − J1e1T2)n2n3 − (J3k3d2 + J1a1T1)n2n4 − (J3k4d3)n3n4]

Now using the sylvester’s criterion in the quadratic forms:

dV

dt
≤ −[

(
b11

n21
2

− b12n1n2 + b22
n22
2

)
+

(
b11

n21
2

− b13n1n3 + b33
n23
2

)
+

(
b11

n21
2

− b14n1n4 + b44
n24
2

)
+

(
b22

n22
2

− b23n2n3 + b33
n23
2

)
+

(
b22

n21
2

− b24n2n4 + b44
n24
2

)
+

(
b33

n21
2

− b34n3n4 + b22
n24
2

)
]
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Where,

b11 =
(d1 + a1P + a2H)

3
, b22 =

(J1d2 + J1e1H − 2β2J1T2)

3
, b23 = (J2k2e1H−J1e1T2),

b33 =
(J2d3 + 2J2β3H − J2k2e1T2 − J2k1a2T1)

3
, b44 =

(J3c1 − J3m)

3
, b12 = (J1a1P ),

b13 = (k1a2J2H − a2T1), b14 = (a1T1), b24 = (J3k3d2 + J1a1T1), b34 = (J3k4d3).

Sufficient conditions for dV
dt to be negative definite are that the following inequalities

hold:

b22 > 0 (19)

b33 > 0 (20)

b44 > 0 (21)

b13 > 0 (22)

b23 > 0 (23)

b11b12 > b212 (24)

b33b44 > b234 (25)

b11b44 > b214 (26)

We note that the inequalities, (11) =⇒ (19), (12) =⇒ (20), (13) =⇒ (21), (14) =⇒
(22), (15) =⇒ (23), (16) =⇒ (24), (17) =⇒ (25) and (18) =⇒ (26). Hence V11 of
E2 in Ω. Proved theorem.
Remark 1.
(a) The natural death rate c1 of Pathogenic fungus is greater than the monod value,
(b) The addition of natural death rate d2 of Infected Orange Trees, to the product of per
capita reproduction rate e1 of Infected Orange Trees and the population of Herbivore
(H) is greater than the twice product of Infected Orange Trees population and it’s
crowding effect β2, then only E2 will exist in the presence of pathogenic fungus.

7 Global Stability of the equilibrium point E2 for
the Model

Theorem 2: In the region Ω, if the following conditions hold:

k2T̃1

k1T̃2
<

(d1 + a1P + a2H)(d2 + e1H)

(a1P )2
(27)

d2k1k3T̃2
a1k2

< (d1 + a1P + a2H)(C1 −m) (28)

a1d
2
3k2k

2
4T̃1

d2k3T̃2
< β3(C1 −m) (29)

9
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where,

R1 =
k2T̃1

k1T̃2
(30)

R2 =
T̃1
k1

(31)

R3 =
a1k2T̃1

2

d2k1k3T̃2
(32)

then E2 will be globally asymptotically stable in the region Ω.

Proof: Let us consider a positive definite function V1 for E2(T1, T2, H, P ) as:

V1 = (T1 − T̃1)
2 +R1(T2 − T̃2)

2 +R2

(
H − H̃ − H̃log

(
H

H̃

))
+R3(P − P̃ )2

Differentiating V1 w.r.t. t, we obtain

dV1
dt

= (T1 − T̃1)
dT1
dt

+R1(T2 − T̃2)
dT2
dt

+R2

(
H − H̃

H

)
dH

dt
+R3(P − P̃ )

dP

dt

from (1)-(4)

dV1
dt

= −d1(T1 − T̃1)
2 − a1P (T1 − T̃1)

2 − a1T1(T1 − T̃1)(P − P̃ )− a2H(T1 − T̃1)
2

−a2T̃1(T1 − T̃1)(H − H̃)− β1(T1 − T̃1)
2(T1 + T̃1) +R1a1P (T1 − T̃1)(T2 − T̃2)

+R1a1T̃1(P − P̃ )(T2 − T̃2)−R1d2(T2 − T̃2)
2 −R1e1H(T2 − T̃2)

2

−R1e1T̃2(T2 − T̃2)(H − H̃)−R1β2(T2 − T̃2)
2(T2 + T̃2)

+R2k1a2(T1 − T̃1)(H − H̃) +R2k2e1(T2 − T̃2)(H − H̃)−R2β3(H − H̃)2

+R3m(P − P̃ )2 +R3k3d2(T2 − T̃2)(P − P̃ )− c1R3(P − P̃ )2

+R3k4d3(H − H̃)(P − P̃ )

Now dV1

dt can be written in the quadratic forms:

dV1
dt

≤ (d1 + a1P + a2H)(T1 − T̃1)
2 − (d2R1 +R1e1H)(T2 − T̃2)

2

−R2β3(H −H)2 − (c1R3 −R3m)(P − P )2 − a1T̃1(T1 − T̃1)(P − P )

+R1a1P (T1 − T̃1)(T2 − T̃2) +R3k4d3(H −H)(P − P )

where,

b11 = (d1 + a1P + a2H), b22 = (d2R1 +R1e1H)
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b33 = R2β3 b44 = (c1R3 −R3m)

b12 = (R1a1P ) b14 = (a1T̃1)

b34 = (R3k4d3) R1 =
k2T̃1

k1T̃2

R2 =
T̃1
k1

R3 =
a1k2T̃1

d2k1k3T̃2

By the Sylvester’s rule, we obtain that dV1

dt will be negative function with the
inequalities:

b11 > 0 (33)

b22 > 0 (34)

b33 > 0 (35)

b44 > 0 (36)

b11b22 > b212 (37)

b11b44 > b214 (38)

b33b44 > b234 (39)

We note that the inequalities, (25) =⇒ (35), (26) =⇒ (36) and (27) =⇒ (37).
Hence V1 is Liapunov function for E2 in Ω, proving the theorem.

8 Numerical Simulation

For numerical results, we have used MATLAB software. The numerical simulations
support the analytical findings. The figures carry the locally asymptotically stability
of all the equilibriums of the given Mathematical Model.

(a) Graph for equilibrium point E1 is obtained considering following para-
metric values:
Λ = 0.9; d1 = 0.29; d2 = 0.3; d3 = 2.2; a1 = 0.9; a2 = 0.9; e1 = 0.8; k1 = 0.5;
k2 = 0.9; c1 = 0.4; k3 = 0.9;β1 = 0.05;β2 = 0.5;β3 = 0.05; k4 = 0.90;m = 0.008;

(b) Graph for equilibrium point E2 is obtained considering following para-
metric values:
Λ = 0.8; d1 = 0.06; c1 = 0.8; k4 = 0.5; a1 = 0.3; a2 = 0.3; e1 = 0.3; k1 = 1.5;
k2 = 0.7; k3 = 0.5;β1 = 0.0005;β2 = 0.005;β3 = 0.005;m = 0.0005; d2 = 0.01;
d3 = 0.65;
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Figure 2: Graph for E1 in the presence of Orange tree, Infected Orange tree,
Pathogen and absence of Herbivore.
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Figure 3: Graph for E2 in the presence of Orange trees, Infected Orange trees,
Herbivore and Pathogen.

(c) Table for equilibrium point E1

E1 (T1, T2, 0, P ) Equilibrium point.
Points T1 T2 H P
Case 1 1.0997 0.7636 0 0.5260
Case 2 2.2391 0 0 0

Table 2: Numerical equilibrium values for different cases of E1. In Case 1, only H
is absent. In Case 2, T2, H, P are absent.

(d) Table for equilibrium point E2

E2 (T1, T2, H, P ) Equilibrium point.
Points T1 T2 H P
Case 1 1.7804 0.6979 0.9175 0.3775
Case 2 1.4626 0 1.6209 0
Case 3 12.1021 0 0 0

Table 3: Numerical equilibrium values for different cases of E2. In Case 1, all the
variables are present. In Case 2, only T2 and P are absent. In Case 3, only T1 is

present.

9 Numerical Simulation

One of the major threats to secure food supplies and sustainable agricultural out-
put is the increase of aggressive pathogens [1, 2, 3]. In this paper, we have studied a
mathematical model to investigate the biological manage of orange trees in the pres-
ence of pathogens and Herbivores. The model has at most two equilibrium points,
E1(T1, T2, 0, P ) and E2(T̃1, T̃2, H̃, P̃ ). It has been observed from the stability of E1

that Orange trees will survive, even in the presence of pathogens when herbivores are
not present in the system.

It has been observed from the stability of E2 that the Orange trees will survive,
even in the presence of herbivores and pathogens.

From the Remarks 1 and 2, and stability conditions of E1 and E2 it has been
observed that the role of Monod function is more appropriate in the study of orange
trees dynamics [see parameter values]. The interior equilibrium point E2 of mathemat-
ical model is locally and also globally stable showing the co-existence. However, from
the equilibrium values (see Table 2 for E1) it is seen that the equilibrium density of
Orange trees increases in the absence of pathogen and herbivore. Also from the equi-
librium values (see Table 3 for E2), it is seen that the equilibrium density of healthy
Orange trees reduces due to the presence of pathogenic fungus and herbivores. In the
pathogenic fungus and also in the absence of herbivores, the density of healthy orange
trees is high; where as, if herbivore population is present then the density of healthy
orange trees reduces due to the preying activity even if pathogenic fungus is absent.
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Further, it is also noted that the herbivore population reduces when pathogenic fun-
gus is present due to infected orange trees on which herbivores are preying.
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