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Abstract—Layerwise quantized neural networks (QNNs) have 
become a potential method for embedded systems since they 
adopt varying precisions for weights or activations in a layerwise 
way. Compared to conventional QNNs, layerwise QNNs use less 
computing energy since they only use the number of data bits 
needed for computations (such as the convolution of weights and 
activations). However, because memory accesses are not 
optimized for the necessary precision of each layer, layerwise 
QNNs still consume a significant amount of energy in 
conventional memory systems. In order to tackle this issue, we 
suggest Quant-PIM, an energy-efficient PIM accelerator for 
layerwise QNNs. Quant-PIM uses customized I/O gating logics in 
a 3-D stacked memory to selectively read just the necessary data 
bits inside a data word, depending on the accuracy. Quant-PIM 
thereby drastically lowers the energy used for memory accesses. 
Furthermore, layerwise QNN performance is enhanced by 
Quant-PIM. Quant-PIM uses the saved memory bandwidth from 
the selective memory access to read two data blocks in a single 
read operation, resulting in improved compute-throughput when 
the needed accuracy is half of the weight (or activation) size or 
less. Our simulation results demonstrate that, without sacrificing 
accuracy, Quant-PIM reduces system energy by 39.1% to 50.4% 
when compared to the PIM system with 16-bit quantized 
precision. 

 

I. INTRODUCTION 

RECENTLY, deep neural networks (DNNs) have been widely 
adopted in various applications, such as image classification 
and speech recognition. In general, DNN applications cause 
high energy consumption, since it requires millions of 
multiply-accumulate (MAC) operations and high memory 
bandwidth, both. This high energy consumption makes it 
difficult to run the DNN applications on energy- constrained 
embedded systems. To address this problem, a quantized 
neural network (QNN) has emerged as a viable solution for 
embedded systems [2]. The QNN reduces com- putation 
energy by replacing floating-point MAC operations with 
fixed-point MAC operations. In addition, since the QNN 
exploits relatively low-precision weight (or activation) instead 
of high-precision one, it has lower memory bandwidth require- 
ment than the DNN. 

 

   However, as the volume of the input data and the number 
of layers increase, QNNs still cause high energy consumption. 
Several studies have reduced energy consumption by adopting 
different precisions for weights or activations in a layerwise 
manner [3], [10], since the precision requirement varies across 
layers within a network. The layerwise QNNs deploy only 
required number of data bits for the computation (e.g., con- 
volution of weights and activations), which in turn reduces 
computation energy compared to the conventional QNNs. 
Though many researchers have focused on the computation 
energy reduction by adopting layerwise QNNs [3], [10], they 
did not consider the optimization of memory accesses for lay- 
erwise QNNs. Even with low precision in the layerwise QNNs, 
each single memory access still transfers a full data word 
(e.g., 64-bit or 32-bit); note, the conventional memory systems 
do not allow transferring data of which size is less than the 
data word size in a single memory access. Thus, the layerwise 
QNNs cause a large amount of energy due to the nonoptimized 
memory accesses, which is same as the conventional QNNs. 

In this letter, we propose Quant-PIM, an energy-efficient 
processing-in-memory (PIM) accelerator for layerwise QNNs. 
We adopt Quant-PIM to a high bandwidth memory (HBM), 
which is widely deployed for neural network (NN) hardware 
accelerators [7], [8]; note HBM has recently been adopted 
to an embedded NN system [7]. Quant-PIM consists of two 
parts: 1) I/O gating logics and 2) processing units for the 
gated I/O. In Quant-PIM, a single memory access selec- 
tively loads/stores only required data bits within a data word 
depending on the precision. To enable such selective memory 
accesses, we modify the I/O gating logics of the HBM. Quant-
PIM controls the I/O gating logics depending on the required 
precision of a layer. In addition, to guarantee the MAC 
operations with any precision, we allocate multiple binary 
MAC units and accumulators into the base die of the 
HBM. Thus, Quant-PIM significantly reduces energy con- 
sumption for memory accesses depending on the required 
precision of a layer, while ensuring normal computation 
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Fig. 1.   Overview of the proposed Quant-PIM. 
 

with any precision. Furthermore, Quant-PIM improves the 
performance of layerwise QNNs. When the required precision 
is half of the weight (or activation) size or less, Quant-PIM 
reads two data blocks1 in a single read operation by exploit- 
ing the saved memory bandwidth from the selective memory 
access, achieving higher compute-throughput. 

 
II. RELATED WORKS 

There have been many studies on the accelerators for 
layerwise QNNs [3], [10], [13]. Judd et al. introduced an 
accelerator which provides the bit-serial execution of the 
MAC operation with any precision [3]. The accelerator seri- 
ally executes a bit operation per clock cycle with high 
parallelism, which significantly reduces computation energy. 
Umuroglu et al. also presented a vectorized bit-serial matrix 
multiplication technique with high parallelism [13]. In addi- 
tion, Sharma et al. proposed an accelerator with a bit- 
decomposition technique [10]. They divided an MAC oper- 
ation into multiple sub-MAC operations to support variable 
precision, which reduces the amount of the required resources 
for the MAC operation. However, all the above studies 
focused on reducing computation energy for MAC opera- 
tions, assuming that all the weights and activations are already 
prepared in the on-chip buffers. They did not consider the 
optimization of memory accesses for layerwise QNNs, thus 
causing a large amount of energy reading the data from 
the main memory. Different from the previous studies, our 
proposed technique selectively accesses only required data bits 
within the data word depending on the required precision of 
a layer, which significantly reduces energy consumption for 
memory accesses. To the best of our knowledge, this letter 
is the first study to optimize the memory accesses with any 
precision in the layerwise QNNs. 

 
III. QUANT-PIM 

We propose a PIM accelerator for layerwise QNNs called 
Quant-PIM. Quant-PIM significantly reduces system energy, 
since: 1) it reduces memory power consumption by selectively 
accessing only required data bits at a bit-level granularity and 
2) it improves performance by reading two data blocks in a sin- 
gle read operation when the required precision is half of the 
weight (or activation) size or less. 

 
A. Overall Architecture 

As shown in Fig. 1, we adopt Quant-PIM to the HBM. 
The HBM has two different parts: 1) base die and 2) core 
dies. Since the base die is a logic die (not a memory 
die), it has been widely deployed for implementing small 
accelerators [5], [11]. We implement processing units of 
Quant-PIM into the base die of the HBM, which is called 
quantized MAC units (QMACs); we allocate eight QMACs 

 
1In this letter, a data block indicates the data accessed from the main 

memory with a single read operation, whose size is typically determined by 
the product of data bus width and burst length. 

 

 
Fig. 2.    Detailed design of Quant-PIM and procedures for Quant-PIM in 
a single memory channel. 

 
(i.e., one QMAC per memory channel), since each memory 
channel is independently accessed. More importantly, we mod- 
ify the I/O gating logics in the memory banks of the core dies. 
In the original HBM, the I/O gating logic accesses the columns 
in the row buffer at a word-level granularity, depending on the 
result of the column decoder. Accordingly, a single memory 
access in the original HBM transfers the full data word even 
with low precision. On the other hand, Quant-PIM allows 
memory accesses at a finer granularity than the original HBM. 
Depending on the required precision of a layer, Quant-PIM 
controls the I/O gating logics to access the columns in the 
row buffer at a bit-level granularity. 

 
B. Processing Flow 

Fig. 2 describes the detailed design of Quant-PIM and the 
procedures for Quant-PIM in a single memory channel. The 

procedures for Quant-PIM are as follows ( 1 to 7 in Fig. 2). 
The host processor offloads the MAC operations for lay- 
erwise QNNs by sending the memory address, data size, 
and required precision to the QMAC. 
The local memory controller of the QMAC gener- 
ates row and column commands based on the memory 
address and data size. 
The QMAC sends the row/column command and 
required precision to the target memory bank depending 
on the memory address. 
Quant-PIM controls the I/O gating logics in the memory 
bank depending on the required precision, so that 
it selectively reads only required data bits within 
a data word. 
The QMAC executes the MAC operations based on the 
data block loaded from the memory bank. Since one 
MAC operation with n-bit precision is replaced with 
n2 1-bit MAC operations [13], the QMAC has multiple 
binary MAC units and accumulators. Considering the 
worst-case precision (i.e., 16-bit) of the weights or acti- 
vations in the conventional QNNs, we allocate 256 
(=162) binary MAC units and accumulators in the 
QMAC. Thus, the QMAC guarantees the MAC oper- 
ations with 16-bit or less precision. The accumulated 
result of the MAC operations is stored in the result 
buffer. 
The local memory controller of the QMAC stores the 
accumulated result to the memory bank. Similar to the 
read operation in step 4 , Quant-PIM selectively stores 
the required data bits based on the precision. 

Quant-PIM   repeats   the   step   2    to    6    until   all 
the offloaded MAC operations are completed. Then, 
Quant-PIM notifies the host processor that all the 
offloaded MAC operations are completed through an 
interrupt signal. 

2 

3 

4 

5 

6 
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Based on the procedures for Quant-PIM, Quant-PIM 
reduces I/O power when the required precision is lower than 
16-bit, since it selectively accesses only required data bits 
within a data word. Thus, Quant-PIM reduces the total HBM 
power consumption, which results in the system energy reduc- 
tion; I/O power occupies up to 70% of the total HBM 
power [12]. 

Furthermore, Quant-PIM improves the performance of lay- 
erwise QNNs, when the required precision is half of the weight 
(or activation) size or less (i.e., 8 bit or less). In step 4 , Quant-
PIM reads two data blocks (data a1 and a2 in Fig. 2) in a single 
memory operation by exploiting the saved memory bandwidth 
from the selective memory access. Note Quant- PIM coalesces 
memory requests to two data block addresses. However, 
Quant-PIM is different from a memory coalescing technique 
which is widely adopted in GPU; the memory coa- lescing 
technique only coalesces memory requests to the same data 
block address. In step 5 , the QMAC executes the MAC 
operations for both data blocks a1 and a2 at the same time, 
by deploying the binary MAC units and accumulators; since 
the 8-bit MAC operations for a single data block requires 
only 64 binary MAC units among 256 binary MAC units, 
Quant-PIM is able to simultaneously execute the 8-bit MAC 
operations for two data blocks. Thus, Quant-PIM provides 
higher compute-throughput, resulting in the system energy 
reduction. 

 
IV. EVALUATION 

A. Methodology 

Table I shows the required precision per layer with relative 
accuracy compared to the 16-bit quantized precision for three 
representative neural networks [3]. For quantization, a uniform 
quantization method is adopted, which replaces 32-bit floating- 
point data with 16-bit integer data by deploying the following 
equation (which is a general quantization method [8]) 

quantized data = real data ∗ scale. (1) 

The required precision is obtained by repeatedly removing the 
least significant bit (LSB) of the 16-bit quantized weights and 
activations until the relative accuracy decreases; note remov- 
ing the LSBs of the already quantized weights or activations 
is also the uniform quantization method. Based on Table I, 
we evaluate the execution time, power consumption, peak on- 
chip temperature, and system energy of Quant-PIM across 
NNs. We consider a 16-bit PIM system as our baseline; the 
16-bit PIM system reads 16-bit quantized weights and acti- 
vations from the HBM and then execute the MAC operations 
with 16-bit precision. We first implement the QMAC (in the 
base die) in Fig. 2 with Verilog HDL using Design Compiler 
and IC Compiler based on Samsung System LSI 28-nm pro- 
cess technology. We set the clock frequency of the QMAC 
to 1 GHz, operating with the HBM synchronously. According 
to the implementation result, the QMAC is able to operate 
at 1 GHz even in the worst-case precision (i.e., 16-bit). In 
addition, we obtain the dynamic power and leakage power of 

the QMAC by 1.0 12.7 mW and 36.2 µW, respectively; we 
extract dynamic power depending on the required precision. 
For the additional circuits in I/O gating logics (in the core die), 
we conservatively evaluate the power consumption based on 
logic process technology.2 According to our implementation, 

 
2The logic implemented with memory process technology is more energy- 

efficient than that implemented with logic process technology [4]. 

TABLE I 

REQUIRED  PRECISION  PER  LAYER  WITH  RELATIVE  ACCURACY 

 
 

   

   

   

 
we extract the dynamic power and leakage power of the addi- 
tional circuits in I/O gating logics by 22.9 mW and 14.7 µW 
per memory channel, respectively. 

We evaluate the execution time and power consumption of 
Quant-PIM across NNs using gem5-aladdin [9] with a cycle- 
accurate DRAM simulator [6]. We reflect the clock frequency 
and power consumption for both the implemented QMAC and 
additional circuits in I/O gating logics to the simulator. We 
also reflect the performance and power of the HBM2 refer- 
ring to the timing/current parameters [5], [6], [11]. Based on 
the power consumption, we evaluate the peak on-chip tem- 
perature of Quant-PIM using HotSpot 6.0 [14]. Since peak on-
chip temperature is strongly affected by heat dissipated from 
power consuming units such as GPU, we assume that the 
HBM (including Quant-PIM) is integrated with a high-end 
GPU for a gaming console [15]. We also evaluate the system 
energy and area overhead of Quant-PIM. 

 
B. Results 

1) Execution Time: Fig. 3 (left) shows the execution time of 
Quant-PIM across NNs. Quant-PIM reduces execution time by 
19.9% 42.1% (27.4% 42.1%) compared to the 16-bit PIM 
system, while maintaining 100% (99%) relative accuracy. We 
break down the execution time for GoogLeNet3 into each 
layer, as shown in Fig. 3 (right). Quant-PIM (100%) signif- 
icantly reduces execution time at the convolution layer 2, 5, 
8, and 11 compared to 16-bit PIM. When 1% relative accu- 
racy loss is tolerable, Quant-PIM (99%) additionally reduces 
execution time at the convolution layer 4. As explained in 
Section III, when the required precision is 8-bit or less, Quant- 
PIM simultaneously reads two data blocks and executes MAC 
operations for the two data blocks. Thus, Quant-PIM offers 
high compute-throughput, resulting in the short execution time 
for layerwise QNNs. 

2) Power Consumption: Fig. 4 (left) shows the power 
consumption of Quant-PIM across NNs. Quant-PIM reduces 
power consumption by 15.4% 18.2% (14.2% 19.6%) com- 
pared to the 16-bit PIM system, while maintaining 100% 
(99%) relative accuracy. We break down the power consump- 
tion for GoogLeNet into each layer, as shown in Fig. 4 (right). 
As explained in Section III, Quant-PIM reduces I/O power 
when the required precision is lower than 16-bit, since it selec- 
tively accesses only required data bits. However, Quant-PIM 
(100%) does not reduce the power (not energy) consumption 
at the convolution layer 2, 5, and 8, since two weights or 
activations (16 bit, in total) in different data blocks are trans- 
ferred together; the required precision is 8 bit. With 1% relative 
accuracy loss, Quant-PIM (99%) does not reduce power con- 
sumption at the convolution layer 4 and 11 as well; the 
required precision is 8-bit. Though Quant-PIM causes addi- 
tional power from the additional circuits in I/O gating logics, 
this power overhead is only 2.2% of the total power consump- 
tion, which is much smaller than the I/O power reduction (up 
to 19.6%). 

 
3We present the layerwise results only for GoogLeNet due to the page 

limit. 
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QMACs and additional circuits in I/O gating logics, respec- 
tively. Since the area of the HBM base die is 96 mm2 [11], 

Quant-PIM causes negligible area overhead (<0.2% of the 
HBM base die area). 

 

 

 

Fig. 3.    Execution time across NNs (left) and layerwise execution time for 
GoogLeNet depending on the required precision (right). 

 

 

Fig. 4. Power consumption across NNs (left) and layerwise power 
consumption for GoogLeNet depending on the required precision (right). 

 

Fig. 5. System energy breakdown across NNs. 

 
 

3) Peak On-Chip Temperature: Based on the power con- 
sumption for NNs, we analyze the peak on-chip temperature, 
considering heat dissipated from the GPU. The peak on-chip 

temperature of the 16-bit PIM system is 88.2 ◦C for all the 
NNs. On the other hand, the peak on-chip temperature of 

Quant-PIM is 84.8 ◦C, 85.4 ◦C, and 84.9 ◦C for GoogLeNet, 
AlexNet, and NiN, respectively. In all the NNs, Quant-PIM has 
lower peak on-chip temperature than the 16-bit PIM system, 
since it reduces I/O power consumption. 

4) System Energy: Fig. 5 shows the system energy of 
Quant-PIM across NNs. Quant-PIM reduces system energy 
by 39.1% 50.4% (38.3% 56.4%) compared to the 16-bit 
PIM system, while maintaining 100% (99%) relative accuracy. 

Since the accelerator itself causes negligible energy (<1% of 
the total system energy) due to its extremely small power, the 
HBM (memory) energy accounts for most of the total system 
energy. Quant-PIM (both 100% and 99%) significantly reduces 
the dynamic and leakage energies of the HBM compared to the 
16-bit PIM system due to the following reasons: 1) Quant-PIM 
reduces power consumption when the required precision is 
lower than 16-bit and 2) Quant-PIM provides higher compute- 
throughput when the required precision is 8-bit or less, which 
results in the short execution time for layerwise QNNs. In 
addition, Quant-PIM (both 100% and 99%) has lower HBM 
refresh energy than the 16-bit PIM system. When peak on-chip 

temperature exceeds 85 ◦C, the HBM requires frequent refresh 
operations to retain the data in the memory cells, which in turn 
increases refresh energy [1]. As explained earlier, Quant-PIM 

has peak on-chip temperature lower than 85 ◦C in most cases, 
which leads to lower refresh energy. Though the peak on- 

chip temperature of Quant-PIM exceeds 85 ◦C, HBM refresh 
energy is reduced due to the short execution time. 

5) Area Overhead: According to the implementation 
results, the area is only 0.16 mm2 and 0.02 mm2 for all the 

V. CONCLUSION 

 We introduce Quant-PIM, a PIM accelerator for layerwise 
QNNs. Because it 1) selectively accesses only the necessary 
data bits at a bit-level granularity to reduce memory power 
consumption and 2) enhances performance by reading two 
data blocks in a single read operation when the required 
precision is half of the weight (or activation) size or less, 
Quant-PIM significantly lowers system energy consumption. 
Comparing Quant-PIM to the 16-bit PIM system, our 
simulation results demonstrate that Quant-PIM decreases 
system energy by 39.1% to 50.4% without sacrificing 
accuracy. Quant-PIM could further increase energy efficiency 
when accepting moderate accuracy loss, even though we only 
take into account the layerwise QNNs keeping 100% (99%) 
relative accuracy. For instance, compared to the 16-bit PIM 
system, Quant-PIM lowers system energy by 67.6% with 
89.4% relative accuracy in the case of GoogLeNet with 4-bit 
quantization. It is anticipated that Quant-PIM will work in 
concert with the most modern accelerators to create layerwise 
QNNs that are energy-efficient. 
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