
Design and Comparative Analysis of 8-bit Restoring
and Non-Restoring Binary Divider Circuits using

Verilog HDL
Amit Singh, Sandeep Singh, Sanjiv Kumar Gupta, Yatindra Gaurav

Department of Electronics Engineering
Institute of Engineering and Rural Technology

Prayagraj, India

Abstract—Binary divider circuits are essential components in
digital arithmetic systems, especially for applications requiring
efficient numerical operations. This paper presents the design,
implementation, and comparison of 8-bit restoring and non-
restoring divider circuits using Verilog Hardware Description
Language (HDL). Both designs are evaluated in terms of hard-
ware resource usage and delay. The non-restoring divider uses
only 23 LUTs and 8 flip-flops, achieving the lowest delay of 2.178
ns, making it ideal for high-speed applications. In contrast, the
restoring divider uses 24 LUTs and 17 flip-flops with a delay of
6.161 ns, offering a simpler design with slightly higher latency.
This study helps designers choose the right division method based
on speed and complexity requirements.

Index Terms—Binary division, Verilog HDL, restoring division,
non-restoring division, digital circuit design

I. INTRODUCTION

Arithmetic logic operations form the computational back-
bone of digital systems, with binary division being a fun-
damental operation in processors, signal processors, and em-
bedded controllers. Unlike addition or multiplication, division
is computationally intensive and hardware-demanding, often
becoming a bottleneck in real-time processing applications.

Binary divider circuits are implemented in many architec-
tures, with restoring and non-restoring algorithms being among
the most widely used techniques [1]–[3]. These methods differ
in control logic and execution steps, impacting factors such
as speed, complexity, and area. In restoring division, partial
remainders are corrected after each subtraction step, which
can increase delay [4]. On the other hand, the non-restoring
division algorithm omits this correction step by intelligently
modifying subsequent operations based on the remainder’s
sign, leading to a more efficient design in terms of speed.

Recent advancements in digital design tools, particularly
FPGA-based synthesis and Hardware Description Languages
(HDLs) like Verilog, have enabled accurate modeling and eval-
uation of these arithmetic circuits. These tools provide insights
into the area-delay trade-offs and help optimize divider designs
for specific applications, such as low-power IoT nodes or high-
speed computing cores.

This paper aims to present and compare 8-bit restoring and
non-restoring binary divider circuits implemented in Verilog

HDL. The designs are evaluated based on critical path delay,
resource utilization, and simulation accuracy. The findings
contribute to the selection of suitable divider architectures
based on performance needs in modern digital systems.

The paper is structured as follows: Section II outlines the
basic principles of divider circuits. Section III describes the
design methodology and implementation of the 8-bit restoring
and non-restoring dividers using Verilog HDL. Section IV
presents the simulation results, while Section V discusses the
synthesis analysis. Section VI offers a comparative analysis
with previous works. Finally, Section VII concludes the paper
with key findings and practical implications.

II. DIVIDER CIRCUIT OVERVIEW

A divider circuit is a digital arithmetic component designed
to perform division operations on binary numbers. Division
is one of the fundamental arithmetic functions used in digital
processors, signal processing units, and embedded systems.
Unlike addition or multiplication, division is more complex
and computationally intensive because it involves multiple
iterative steps, including subtraction, comparison, and bit
shifting.

In hardware, divider circuits take two inputs: the dividend
(the number to be divided) and the divisor (the number by
which the dividend is divided). The circuit produces two
outputs: the quotient (the result of the division) and the
remainder (what is left after division). Fig. 1 shows the general
block diagram of a digital divider circuit.

Fig. 1. Digital Divider Circuit Diagram

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 6 2025

PAGE NO: 52

Efficient implementation of divider circuits is critical be-
cause division often represents a bottleneck in processing
speed. Therefore, various algorithms and architectures have
been developed to optimize division operations in terms of
speed, area, and power consumption [5], [6].

III. DESIGN METHODOLOGY AND IMPLEMENTATION

The performance and reliability of arithmetic divider circuits
largely depend on how effectively their architecture is imple-
mented in hardware [8]. To ensure both functional correctness
and optimal resource utilization, the 8-bit restoring and non-
restoring divider circuits were designed using Verilog HDL
and verified through simulation and synthesis on an FPGA
platform. The design process was divided into three main
phases: modeling, synthesis, and simulation.

A. Restoring Division Algorithm

In restoring division, the circuit attempts to subtract the
divisor from the partial remainder in each cycle. If the result is
negative, the original value is restored by re-adding the divisor
before proceeding to the next step [9], [10]. This ”restore if
negative” logic adds extra delay in each cycle but keeps the
design simple and predictable in terms of control logic. The
quotient is constructed bit-by-bit as the operation progresses.

Fig. 2. Circuit Diagram of Restoring Division

Restoring division is suitable for systems where simplicity
and area conservation are prioritized over speed. Its determin-
istic control makes it easier to implement in educational or
low-power designs.

B. Non-Restoring Division Algorithm

The non-restoring division method enhances performance
by eliminating the restoration step. Instead of reverting on a
negative result, the algorithm intelligently alternates between
subtraction and addition in the next cycle, depending on the
sign of the remainder. This leads to fewer operations and
shorter overall latency [11], [12].

Non-restoring dividers are generally faster and more effi-
cient in real-time processing environments. They are preferred
in applications where throughput is critical and the additional
complexity in control logic is acceptable.

Both designs were created using synchronous clocking with
reset and enable inputs to mimic realistic control in embedded
systems [13], [14]. Behavioral simulations were conducted us-
ing Vivado’s built-in simulator. Testbenches were developed to

Fig. 3. Circuit Diagram of Non-Restoring Division

provide a comprehensive set of input vectors, including signed
and unsigned binary values. The waveforms were analyzed
to ensure the correct generation of quotient and remainder
outputs for various input combinations. Timing simulation
further confirmed the logic stability of the synthesized design
and allowed for the evaluation of propagation delays and
potential glitches.

IV. SIMULATION RESULTS

A. Simulation Results - Restoring Divider
The restoring divider circuit was tested with a variety of

input combinations. The simulation confirmed the accurate
generation of quotient and remainder values based on iterative
subtraction and restoration logic.

Fig. 4. Waveform simulations of Restoring Division

Table I shows the test cases used for verification of the
restoring divider circuit.

TABLE I
DIVISION TEST CASES - RESTORING DIVIDER

Test Case Dividend Divisor Quotient Remainder
1 8 2 4 0
2 10 3 3 1
3 15 2 7 1
4 9 5 1 4
5 8 1 8 0

The waveform simulations showed that the control logic cor-
rectly restored the partial remainder when subtraction yielded
a negative value, ensuring precise output.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 6 2025

PAGE NO: 53

B. Simulation Results - Non-Restoring Divider

The non-restoring divider was also simulated using the same
input cases. This circuit relies on sign-based decisions to
alternate between subtraction and addition without restoring
negative results.

TABLE II
DIVISION TEST CASES - NON-RESTORING DIVIDER

Test Case Dividend Divisor Quotient Remainder
1 10 3 3 1
2 14 4 3 2
3 9 2 4 1
4 7 3 2 1

The simulation confirmed the correct functionality of the
non-restoring algorithm, with reduced iteration time and no
restoration overhead, resulting in faster execution compared
to the restoring divider.

Fig. 5. Waveform simulations of Non-Restoring Division

V. SYNTHESIS RESULTS

The restoring and non-restoring 8-bit divider circuits were
synthesized using the Vivado Design Suite, targeting a mid-
range FPGA device. Post-synthesis reports were used to ex-
tract timing delays, resource usage, and estimated area from
schematic analysis. This section summarizes the key findings.

A. Resource Utilization, Timing, and Area Estimation

Resource usage was evaluated in terms of LUTs, Flip-
Flops (FFs), and estimated area derived from the synthesized
schematic. The critical path delay provides a measure of
the maximum propagation time through combinational logic.
Estimated area (in logic cells or gates) was inferred based on
the number of active components in the schematic.

B. Observations

The Non-Restoring Divider demonstrates the smallest esti-
mated schematic area and the lowest delay, making it ideal
for area- and speed-constrained applications. The Restoring
Divider, though slightly larger, is still efficient compared to
historical counterparts and benefits from simplified control
logic. Designs reported in [1] consume significantly more area
and suffer from longer delays due to older or less optimized
design methodologies. The schematic-based area estimation

TABLE III
PERFORMANCE COMPARISON OF DIVIDER IMPLEMENTATIONS

Implementation LUTs FFs Delay (ns) Estimated Area
Restoring Divider 24 17 6.161 Moderate (140 logic

cells)
Non-Restoring Divider 23 8 2.178 Compact (95 logic

cells)
Restoring Divider
(Massey, 2006) [1]

108 40 33.6 Large (400+ logic
cells)

Non-Restoring Divider
(Massey, 2006) [1]

65 22 30.5 High (280 logic cells)

Non-Restoring, Pipelined
(Massey) [1]

66 30 15.7 High (300 logic cells)

reflects real-world hardware impact and is crucial when tar-
geting FPGAs with limited logic resources. These results show
that modern HDL-based approaches can drastically reduce
hardware footprint while improving speed, offering an optimal
balance of area, delay, and resource efficiency.

C. Synthesized Schematic Diagrams

The synthesized RTL schematics provide a visual repre-
sentation of the hardware components inferred by the FPGA
synthesis tool (Vivado). These diagrams illustrate the internal
structure, signal flow, and complexity of both the restoring and
non-restoring divider designs.

1) Restoring Divider Schematic: The restoring divider
schematic shows a structured control unit, subtraction module,
and multiplexer used for conditionally restoring the previous
state.

Fig. 6. Schematic Diagram of Restoring Division

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 6 2025

PAGE NO: 54

Additional logic is used to handle sign checks and result
shifting. The design is moderately dense, occupying more FFs
due to the sequential restoration logic.

2) Non-Restoring Divider Schematic: The non-restoring
divider schematic features a more optimized datapath with
minimal control logic.

Fig. 7. Schematic Diagram of Non-Restoring Division

Conditional addition/subtraction logic is included based
on remainder sign detection. The design appears compact,
reflecting its reduced FF and LUT usage.

VI. COMPARATIVE ANALYSIS

This section presents a detailed comparison between the
restoring and non-restoring divider circuits based on simu-
lation accuracy, synthesis metrics, and overall hardware ef-
ficiency. The analysis draws from results obtained through
functional simulation and post-synthesis evaluation using the
Vivado Design Suite.

A. Performance Metrics Comparison

Speed: The non-restoring divider achieved a significantly
lower critical path delay, making it suitable for real-time
applications.

Resource Usage: Both implementations consumed a small
and comparable number of LUTs, but the restoring divider
used more flip-flops due to additional control logic.

Design Complexity: The restoring divider benefits from
a straightforward and predictable design, whereas the non-
restoring divider employs more sophisticated decision-making
logic.

TABLE IV
COMPARISON OF RESTORING VS. NON-RESTORING DIVIDER

IMPLEMENTATIONS

Parameter Restoring Divider Non-Restoring Divider
LUTs 24 23
Flip-Flops 17 8
Critical Path Delay (ns) 6.161 2.178
I/O Pins 16 18
Complexity Simple control logic Requires sign-detection logic
Speed Moderate High

TABLE V
RESOURCE UTILIZATION AND PERFORMANCE COMPARISON OF DIVIDER

DESIGNS

Design LUTs FFs Delay (ns)
Restoring Divider 24 17 6.161
Non-Restoring Divider 23 8 2.178
Restoring Divider [1] 108 40 33.6
Non-Restoring Divider [1] 65 22 30.5
Pipelined Non-Restoring [1] 66 30 15.7

B. Comparison with Literature

Table V provides a side-by-side comparison of this work
with earlier divider designs reported in literature:

The comparison shows that the Non-Restoring Divider
demonstrates superior performance with minimal LUTs, FFs,
and the lowest delay (2.178 ns). Pipelined versions reduce
delay but increase hardware usage. Designs from [1] are
resource-intensive and slower. Thus, the Non-Restoring Di-
vider is best for low-area, high-speed applications, while
pipelined designs suit performance-critical systems.

Fig. 8. Comparison of Divider Designs

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 6 2025

PAGE NO: 55

C. Summary

The non-restoring divider designed in this work delivers
superior performance in terms of delay and hardware effi-
ciency compared to both the restoring counterpart and prior
literature. The restoring divider still holds merit for appli-
cations where design simplicity and ease of verification are
important. Compared to historical designs, both architectures
in this work exhibit significant improvements in area and
timing, demonstrating the advantage of optimized HDL-based
modeling and FPGA synthesis.

VII. CONCLUSION

This paper presented the design and comparison of 8-
bit restoring and non-restoring binary divider circuits using
Verilog HDL. The non-restoring divider achieved a lower
delay of 2.178 ns using only 23 LUTs and 8 flip-flops, making
it suitable for high-speed and resource-efficient applications. In
comparison, the restoring divider, though slightly slower with
a delay of 6.161 ns and higher flip-flop usage (17), offered
a simpler control structure. This study helps in selecting the
appropriate divider architecture based on design goals such as
speed or simplicity. In the future, this work can be extended
to develop higher-bit or pipelined divider circuits for more
advanced digital systems.

REFERENCES

[1] J. L. Massey and J. A. Saluja, ”A High-Speed Restoring Divider for
Binary Numbers,” IEEE Transactions on Computers, vol. 55, no. 7, pp.
887–891, July 2006.

[2] A. A. Khan, M. S. Uddin, and M. S. Hossain, ”Design and Implemen-
tation of an 8-bit Non-Restoring Divider using Verilog,” ARPN Journal
of Engineering and Applied Sciences, vol. 12, no. 11, pp. 3362–3366,
2017.

[3] R. S. Gupta and P. Sharma, ”High-Performance Newton-Raphson Di-
vider for 32-bit Architectures,” International Journal of Electronics and
Communication Engineering, vol. 11, no. 2, pp. 44–50, 2023.

[4] M. Mano and M. D. Ciletti, Digital Design with an Introduction to the
Verilog HDL, 5th ed., Pearson Education, 2013.

[5] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs,
2nd ed., Oxford University Press, 2010.

[6] D. A. Patterson and J. L. Hennessy, Computer Organization and Design:
The Hardware/Software Interface, 5th ed., Morgan Kaufmann, 2014.

[7] P. K. Meher, ”High-Speed Hardware-Efficient Division Architectures for
Digital Signal Processing Applications,” IEEE Transactions on Circuits
and Systems II, vol. 57, no. 9, pp. 678–682, Sep. 2010.

[8] Xilinx Inc., ”Vivado Design Suite User Guide: Synthesis (UG901),”
Version 2022.1, [Online]. Available: https://www.xilinx.com.

[9] N. H. E. Weste and D. Harris, CMOS VLSI Design: A Circuits and
Systems Perspective, 4th ed., Addison-Wesley, 2010.

[10] C. H. Roth and L. L. Kinney, Fundamentals of Logic Design, 7th ed.,
Cengage Learning, 2013.

[11] Abdel-Hafeez, S., ”A fast and cost-effective integer restoring division
hardware,” Computers and Electrical Engineering, vol. 116, 109221,
2024.

[12] SenthilpariI, C., VishbupriyaI, C. L. L., Deivasigamani, S., and Rosalind,
G., ”Design of storing and restoring array divider circuit using binary
decision diagram-based adder/subtractor circuit,” Journal of Engineering
Science and Technology, vol. 19, no. 4, pp. 1235-1253, 2024.

[13] Jha, C. K., Qayyum, K., Hassan, M., and Drechsler, R., ”FARAD: Auto-
mated Formal Verification of Approximate Restoring Array Dividers,” in
2025 38th International Conference on VLSI Design, pp. 43-48, IEEE,
2025.

[14] Wu, C., Shi, W., Yuan, Y., Zou, Z., Mo, Z., and He, J., ”Area-Delay-
Energy-Efficient Approximate Dividers Based on Piecewise Linear Fit-
ting of Surface,” IEEE Transactions on Circuits and Systems I: Regular
Papers, 2024.

[15] Prasad, H. and Kumar, A., ”Power Estimation of Radix-2 and High
Radix Embedded Divider IP core 5.1 for FPGAs using Regression
Technique,” Journal of Circuits, Systems and Computers, 2025.

[16] J. Seo and Y. Kim, ”High Accuracy Approximate Restoring Divider,”
2021 IEEE International Conference on Consumer Electronics-Asia
(ICCE-Asia), Gangwon, Korea, Republic of, 2021, pp. 1-3.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 6 2025

PAGE NO: 56

