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Abstract—Generating synthetic data has become an 
important technique in data science that provides solutions to 
many challenges such as private data, rare data, and rich 
information. This research explores the diversity of 
computing techniques, from artificial intelligence techniques 
such as artificial neural networks (GANs), generalized 
instruction tuning and variable auto-encoders (VAEs) to legal 
rendering, live cloning and data protection technology. An 
overview of each method is provided and its content, 
advantages, limitations, and practical applications in various 
fields are discussed. Through comparative analysis, this 
article evaluates the advantages and disadvantages of each 
method and provides insight into their suitability for various 
applications. It also discusses the challenges and future 
directions in the development of synthetic materials and 
provides recommendations to researchers and professionals. 
This research is important for understanding the state of the 
art in synthetic materials design and informs future research 
in this rapidly changing field. 

Keywords—synthetic data, AI techniques, comparative 
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I. INTRODUCTION  

In the age of big data and advanced analytics, 
access to good data is essential to foster innovation 
and decision-making in many fields. However, 
concerns about data privacy, rarity, and diversity 
often hinder the availability of real-world data for 
analysis and research. Synthetic profiling has 
emerged as a promising solution to these challenges, 
allowing researchers and professionals to generate 
accurate information and privacy for a variety of 
applications. 

Data subjects often de-identify or anonymize 
data in various ways, including removing personal 
characteristics (e.g. name and address), scrambling 
(e.g. at birth) in order to provide sensitive 
information to others or split the changes into 
different categories to have more people in each 
category [1]. Although the additional data contained 
in legally anonymized data will not be used for 
personal identification purposes, it will contain 
sufficient data to confirm identity when associated 
with other data (such as social media platforms). 
Efforts to determine the effectiveness of de-

identification techniques have been unsuccessful, 
especially in the context of big data [2]. 

Synthetic data generation has been 
researched for nearly three decades [4] and has 
applications in many domains [5, 6], including 
patient data [7] and medical data (EHRs) [8, 9]. It can 
be a useful tool in situations where real data is 
expensive, scarce, or unavailable. Although 
obtaining new knowledge directly from synthetic 
materials is not possible or advisable in some 
applications, it can still be used for many secondary 
applications such as for learning. 

Depending on the purpose, synthetic data can 
replace real data, augment real data, or be used as a 
surrogate for rapid investigations [3]. 

In the information science and intelligence 
business, synthetic information has become an 
important tool to solve special, rare and diverse 
information problems. This introduction provides a 
brief overview of synthetic dataset generation 
methods: Generative Adversarial Networks (GANs), 
Generalized Instruction Tuning, Variable Auto-
encoders (VAEs), Rules Engine, Entity Cloning, and 
Data Masking techniques. Although the rules-based 
approach limits the ability to capture complex 
patterns, it provides flexibility by allowing users to 
define business rules for generating data. This is 
especially important when there is a relationship 
between the data stored. Although these methods 
involve a balance between confidentiality and the use 
of the power of data paper, they cover anonymous 
data or move sensitive data to confidentiality while 
protecting the dataset. Understanding: principles, 
practices, and trade-offs. Understanding these 
processes allows scientists and engineers to make 
informed decisions when designing synthetic 
products for multiple users. 
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II. GENERATIVE AI TECHNIQUES 

Generative adversarial networks (GAN), 
generalized instruction tuning, and variable auto-
encoders (VAE) are important technologies in the 
field of generative intelligence. Each method uses 
different methods to learn from existing data and 
create synthetic data to meet a variety of applications 
in data science and beyond. 

A. Generative Adversarial Networks (GANs) 

GAN consists of two neural networks: the 
generator and the supervisor involved in the minimax 
game. While the generator creates the data model, the 
person watches the difference between real and 
synthetic models. By providing feedback, GANs 
improve the machine's ability to generate real 
information to fool the discriminator. This process 
produces synthetic materials that resemble the 
original materials. 

To further explain how the network is trained, the 
training is split into training the discriminator and the 
generator separately. Training the discriminator is to 
create a data set consisting of the events generated by 
G and the content of the original data. The 
discriminator produces a probability (a continuous 
value between 0 and 1) that indicates whether the 
observation belongs to the original data (0 means the 
discriminator is 100% sure that the given rate bound 
is synthetic, while 1 means completely different) 
[10]. 

Given the feedback from the discriminator (e.g. 
unemployment rate), the producer attempts to 
improve the discriminator. As training is done, G uses 
the results of D to create better models, i.e. samples 
like real data. As the information produced by G 
becomes more accurate, D is also improved so that it 
can be better determined whether the model is real or 
synthetic. Therefore the two networks can improve 
each other and ideally G will be able to follow the 
data distribution and D will be 12 each, for example 
D differs from the real analysis and their Random 
generation is to predict the result. In this ideal case, G 
successfully redistributed the original data by lying to 
D [10]. 

 

Fig. 1. A GAN Diagram 

Some challenges often hinder successful learning 
of GANs, regardless of the details or the design 
adopted. When the generator and discrimination fail 
to reach equilibrium, a loss of emissions occurs and 
there is no change in unemployment during the study 
period. Species collision occurs when the generator 
focuses on a few species in the target distribution and 
ignores others, creating limited diversity in its output. 
When the discriminator is too good, data loss occurs 
and the minimum gradient signal is provided to drive 
the generator update. Vanishing gradients occur 
when the gradients are too small to change negative 
patterns, hindering the progression of learning. 
Hyper-parameter tuning involves optimization of 
various parameters such as learning rate and network 
architecture to achieve GAN performance. Solving 
these issues requires careful experimentation, new 
ideas, and optimization strategies to ensure GAN 
training is stable and effective across a variety of 
applications and materials. 

Generative Adversarial Networks (GANs) have 
emerged as a powerful method for generating 
synthetic data across multiple disciplines. One use 
for GANs is the generation of realistic images, such 
as those featuring humans, animals, or landscapes. 
These synthetic images can be used for many 
purposes, including creating various datasets for 
artistic or creative endeavors, developing computer 
vision models, and creating lifelike visual content for 
video games and virtual reality. Additionally, GANs 
are utilized to generate study-worthy artificial 
medical images, which simplifies the development 
and testing of medical imaging techniques without 
the need for large, annotated datasets. GANs are also 
employed in data augmentation, which generates 
additional training examples to improve the 
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robustness and wider applicability of machine 
learning models. 

 

B. Generalized Instruction Tuning 

Large Language Models (LLMs) provide the 
unprecedented ability to understand and produce 
human-like text. By expanding the sample size and 
data size , LLM can better predict the next character 
and perform certain activities with certain teaching 
methods . Intelligence does not then translate directly 
into human advice [11]. 

Natural language processing (NLP) datasets 
provided by instructions are used to refine LLMs 
before they are applied to fresh (NLP) jobs [12]. 
However, the restricted set of NLP tasks available 
limits the generalization capacity of tailored LLMs 
[13, 14] in real-world scenarios. Self-instruct [12] is 
a cheap method of creating artificial instruction 
tuning datasets, which generate new instructions by 
using randomly selected instructions from the pool 
to few-shot prompt an LLM (like text-davinci-002). 
First, a small set of seed instructions written by 
humans is used to start the process. Unfortunately, 
the diversity of generated instructions remains a 
challenge because few-shot prompting tends to 
provide new instructions that resemble past ones. 
Moreover, producing seed instructions of superior 
quality requires a substantial amount of human labor 
and knowledge. 

Evolve-Instruct [15] improves self-instruct by 
using LLMs to add different rewriting processes 
(data argumentation) to existing instruction tuning 
datasets. Therefore, the scope of activities or 
domains that these improved datasets are capable of 
covering is limited by the original datasets used as 
input. Research has also concentrated on developing 
activity- or domain-specific datasets for instruction 
modification. 

 

Fig. 2. Different methods of Generalized Instruction 
Tuning 

Scalability, privacy, and communication 
overhead are problems for FLAN, which uses 
federated learning techniques, particularly in large-
scale distributed systems. Depending on the chosen 
self-supervised learning target, self-instruct 
techniques can produce synthetic samples of varying 
quality. Additionally, while they may perform well 
with some forms of data, such as text or photographs, 
they may not do well with structured tabular data. 
Evolve-Instruct is based on computationally 
intensive evolutionary algorithms, which may have 
issues with constrained generalization if the initial 
population of synthetic data samples is not diverse. 
These techniques offer intriguing avenues for 
producing synthetic data, despite the possibility of 
issues; nonetheless, one must carefully consider their 
limitations in specific use cases and data domains. 

Generalized Instruction Tuning (GIT) is a novel 
approach to synthetic data generation that leverages 
machine learning models to infer the underlying data 
distribution from a sparse collection of requirements 
or instructions. One practical application of GIT is 
the generation of synthetic text data for tasks related 
to natural language processing. Upon obtaining high-
level instructions or guidelines, such as intended 
content structure, tone, or attitude, GIT can generate 
a variety of contextually relevant text data. This 
synthetic text can be used to improve text databases, 
train language models, or create realistic 
conversation transcripts for chatbot production. 
Furthermore, social media analytics, tailored 
recommendation systems, and content production for 
marketing initiatives could be beneficial for GIT. In 
these areas, generating customized text data is 
crucial for establishing a connection with customers 
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and understanding their preferences. In addition, GIT 
can be used to generate synthetic time series data for 
forecasting models, anomaly detection, and financial 
simulations. This enables researchers and 
practitioners to experiment with different scenarios 
and study the behavior of systems in varied 
surroundings. 

 

C. Variable Auto-Encoders (VAE) 

A variational auto-encoder (VAE) is a type of 
semi-supervised/self-supervised neural network 
design that is a member of the Auto-encoder family. 
When it comes to representing a dataset, the VAEs 
are similar to neural generative models that use a 
Gaussian distribution by first encoding the input data 
into a reduced dimensional space (a Gaussian 
distribution density), then decoding a sample from 
this distribution back to the original input. Put 
another way, this type of neural network tries to 
reproduce the input even in the face of severe 
limitations (fewer nodes in hidden layers) [16]. 

 

Fig. 3. Visual structure of auto-encoder  

Variational auto-encoders, or VAEs, are useful 
tools for building synthetic datasets, but they have a 
number of disadvantages. One major issue is their 
tendency to produce fuzzy or low-quality samples, 
especially when compared to other generative 
models such as Generative Adversarial Networks 
(GANs). This is due to the fact that the model is often 
driven to generate samples that are found in the dense 
regions of the data distribution by the VAE objective 
function, which often results in outputs that are less 
diverse or realistic. Additionally, VAEs may have 
trouble accurately capturing complex data 
distributions, especially in high-dimensional spaces 
or datasets with intricate inter-variable linkages.  

Another challenge is that, by default, VAEs 
operate at the level of the entire dataset rather than 
focusing on specific aspects, making it difficult to 
control certain features or qualities of the generated 
samples. Despite these limitations, VAEs are 
nevertheless a helpful tool for producing synthetic 
data, particularly when combined with other 
techniques or when interpretability and latent space 
representations are important considerations. 

Variational Auto-encoders (VAEs) offer versatile 
applications for generating artificial intelligence 
across multiple domains. One use case for VAEs in 
the healthcare sector is the creation of artificial 
medical images, such as MRI or X-ray scans, to train 
deep learning models without compromising patient 
privacy. By learning the underlying distribution of 
real medical images, VAEs may produce synthetic 
images that closely resemble the original data while 
retaining significant features and statistical aspects. 
This enables researchers and clinicians to develop 
and evaluate image-based diagnostic algorithms, 
assess therapeutic efficacy, and conduct large-scale 
studies using a range of representative datasets. In 
the banking and finance sectors, VAEs are also 
helpful in producing artificial financial data for risk 
management and fraud detection. By merging 
transactional data while preserving its statistical 
characteristics, VAEs make it easier to create and test 
fraud detection algorithms and predictive models in 
a secure and compliant manner. Furthermore, 
manufacturing processes can benefit from the 
utilization of synthetic sensor data produced by 
VAEs to improve product quality control, optimize 
predictive maintenance plans, and simulate real-
world operating conditions for industrial machinery 
and equipment. 

 

III. RULES ENGINE 

Generating synthetic data using a rules engine 
involves defining and applying user-defined 
business rules to create data that adheres to specific 
criteria or conditions. 

 
 Rule Definition: Users define rules that 

govern the generation of synthetic data based 
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on their domain knowledge and specific 
requirements. These rules can include 
constraints, transformations, or conditional 
logic that dictate how data should be 
generated. 

 Data Schema Mapping: The rules engine 
maps the defined rules to the data schema or 
structure of the target dataset. This mapping 
ensures that the generated data aligns with 
the expected format and attributes of the 
original dataset. 

 Data Generation: The rules engine processes 
the defined rules to generate synthetic data 
instances that satisfy the specified criteria. 
This may involve generating data from 
scratch or modifying existing data to conform 
to the rules. 

 Quality Assurance: Generated data 
undergoes quality checks to ensure that it 
meets predefined standards and accurately 
represents the underlying data distribution. 
This may involve validating data 
consistency, completeness, and adherence to 
business rules. 

 Iteration and Refinement: Users can 
iteratively refine and adjust the rules based 
on feedback and validation results to improve 
the quality and relevance of the synthetic 
data. 
 

Overall, using a rules engine for synthetic data 
generation provides flexibility and control over the 
data generation process, allowing users to tailor the 
generated data to their specific needs and constraints. 
It's commonly used in industries such as finance, 
healthcare, and retail, where strict regulations, 
privacy concerns, and complex business logic 
necessitate customized data generation approaches. 

 

 
Fig. 4. Rules Engine 

 

Rules engines provide a systematic framework for 
generating synthetic data based on user-defined 
business rules. Regretfully, their utility is limited 
because it requires a great deal of topic expertise and 
effort to design and maintain appropriate rules. 
Larger and more diverse datasets may provide 
scalability issues, making it more challenging for 
rules-based approaches to adapt to changing data 
requirements. Moreover, complicated data 
distributions may be difficult for rules engines to 
comprehend, leading to the creation of artificial 
datasets that are either diverse or unrepresentative of 
real-world scenarios. Despite these challenges, rules-
based generation is nevertheless helpful for ensuring 
privacy and regulatory compliance in a range of 
businesses. In order to enhance the precision and 
authenticity of artificial intelligence models, rules 
engines can be combined with complementing 
methods such as data masking. Furthermore, rule 
sets can be updated in response to feedback in order 
to lessen some of the drawbacks of this approach. 

Rules-based synthetic data generation approaches 
have practical applications across several industries 
and use cases. Healthcare organizations employ rules 
engines to generate fictional patient data while 
adhering to stringent privacy regulations like 
HIPAA. Similar to this, in finance, pre-established 
rules are utilized to generate synthetic financial 
transaction data that models different situations for 
compliance testing and risk assessment. Rules-based 
synthetic data synthesis in retail aids in inventory 
management and demand forecasting by producing 
synthetic sales and customer data. Rules engines are 
also utilized in the manufacturing industry to 
generate synthetic sensor data that improves 
predictive maintenance algorithms and increases 
output.  

IV. ENTITY CLONING 

Entity cloning is a method used to generate 
synthetic data by extracting and replicating data from 
a single business entity (e.g., customer, product, 
transaction) across various sources while 
maintaining referential integrity and privacy. The 
process involves the following steps: 
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 Data Extraction: Extract relevant data 
pertaining to the target business entity from 
different source systems or databases. 

 Data Masking: Mask sensitive or personally 
identifiable information (PII) within the 
extracted data to ensure privacy compliance 
and data security. 

 Cloning: Clone the extracted data of the 
business entity, creating multiple instances 
with unique identifiers while maintaining the 
relationships and integrity of the data. 

 Anonymization: Further anonymize the 
cloned data to prevent re-identification of 
individuals while retaining the statistical 
properties and characteristics of the original 
data. 

 Quality Assurance: Validate the synthetic 
data to ensure its accuracy, consistency, and 
suitability for intended use cases. 

 

Entity cloning ensures that synthetic data 
accurately represents real-world scenarios while 
addressing privacy concerns and maintaining data 
integrity. This method finds applications in various 
domains, including finance, healthcare, retail, and 
manufacturing, where large-scale datasets are 
required for analysis, testing, and model training 
while ensuring compliance with data privacy 
regulations. 

It is important to consider the many constraints 
associated with the entity cloning process when 
generating synthetic datasets. First off, entity cloning 
could have problems introducing variance or 
unpredictability to the generated dataset, despite the 
fact that it is an effective method for swiftly 
generating massive volumes of data by copying and 
extracting information from previous entities. 
Because of this lack of diversity, fake datasets may 
not fully capture the breadth and complexity of real-
world data, which could diminish the effectiveness 
of later applications such as machine learning model 
training. Additionally, if the cloned data is not 
properly anonymized or disguised, privacy issues 
may develop as entity cloning entails simply 
reproducing data from existing entities without 
sufficient privacy safeguards. Furthermore, when 
dealing with complex data schemas or connected 

entities, entity cloning may find it challenging to 
maintain relational integrity across the generated 
dataset. Entity cloning is an efficient and simple 
method for producing synthetic data overall, but it 
has limitations with regard to privacy protection, 
diversity, and relational integrity. These 
considerations make it crucial to consider your 
options carefully and employ alternative tactics 
before utilizing this technique. 

Entity cloning is a useful technique that may be 
applied in a variety of contexts and quickly creates 
artificial datasets with referential integrity 
maintained. Synthetic patient datasets can be 
produced for AI model training in the medical field 
without sacrificing patient privacy. Financial 
organizations create synthetic financial transaction 

data via entity cloning to detect fraud while 
protecting consumer confidentiality. This approach 
simulates equipment or inventory records to predict 
breakdowns or stock shortages, which helps with 
predictive maintenance and inventory optimization 
in the manufacturing sector. Organizations can easily 
optimize operations and train models by copying 
records and introducing variances. Notwithstanding 
its benefits, entity cloning has drawbacks, such as the 
difficulty to produce completely new data and certain 
privacy concerns if improperly concealed.  

V. DRAWBACKS OF USING SYNTHETIC DATA 

Despite its benefits, using synthetic data has 
a number of disadvantages. First off, compared to 
real-world data, synthetic data might not be as 
realistic, which could result in inaccurate modeling 
and analysis. Furthermore, methods for creating 
synthetic data may add biases or find it difficult to 
generalize across many contexts, which could affect 
how resilient the models are. Verifying synthetic 
data for correctness and quality is difficult and needs 
close examination. Concerns about privacy also 
surface because, even if synthetic data is meant to 
preserve privacy, its management could still leave 
users vulnerable to re-identification. Furthermore, 
synthetic data might not account for every edge case 
found in real-world data, which would reduce its 
usefulness in some situations. Last but not least, 
producing high-quality synthetic data is more 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

PAGE NO: 82



resource-intensive than using real data since it 
requires a lot of computer power, knowledge, and 
time.  
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