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Abstract

This study develops a fractional-order differential equation model to analyze
the interactions among aquatic plants, herbivores, and plant diseases. We examine
the boundedness of solutions, assess both local and global stability of equilibrium
points, and explore potential bifurcations. Our findings provide insights into the
complex dynamics of aquatic ecosystems influenced by plant diseases.

1 Introduction

Aquatic ecosystems are characterized by intricate interactions among plants, herbivores,
and pathogens. Understanding these dynamics is crucial for effective ecosystem manage-
ment. Fractional calculus offers a robust framework for modeling such interactions, cap-
turing memory effects and hereditary properties inherent in biological systems. Recent
studies have applied fractional-order models to plant–herbivore interactions, revealing
complex dynamics including stability and bifurcation phenomena [1, 2].
Because of the added food and Allee effect on the insect densities, we see a saddle-node
bifurcation. Additionally, we plot a two-parameter bifurcation diagram numerically in re-
lation to the system’s fractional order and harvesting parameter. Finally, we find that the
modified Rosenzweig-MacArthur model with extra food for the predator and harvested
pest population, as well as the fractional-order Rosenzweig-MacArthur model, are better
models for pest management[3]. The authors also demonstrate the worldwide stability
of the positive equilibrium point. The model’s dynamical behaviours, including bifurca-
tion and the chaotic phenomena, are demonstrated by the numerical simulations, which
also validate the accuracy of our theoretical findings[4]. The single species multiplicative
Allee effect is studied in this research using a fractional differential equation model. We
start by looking at equilibrium point stability. We also provide a few adequate conditions
that guarantee the integral solution’s existence and uniqueness. To verify our analytical
results, we run a number of numerical simulations in the last part[5]. The occurrence of
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two limit cycles driven by the derivative’s order at the same time, the bistability phe-
nomenon for both weak and strong Allee effect cases, and more dynamic behaviours like
forward, backward, and saddle-node bifurcations driven by the transmission rate are all
demonstrated numerically. We have discovered that when disease propagation is relatively
high, the predator with a strong Allee effect has a substantially higher chance of going
extinct[6]. Using a linearisation approach, we determine some adequate requirements that
ensure the locally asymptotically stability of the various equilibrium points of the involved
predator-prey model. We do this by analysing the presence of various equilibrium points
using a simple mathematical analysis method. Thirdly, the Hopf bifurcation theory of
fractional order differential equations is used to examine if the predator-prey model under
consideration exhibits Hopf bifurcation[7]. We examine a single-species, fractional-order
model made up of many patches joined via diffusion. As expected in any population dy-
namics, we first demonstrate the existence, uniqueness, non-negativity, and boundedness
of the model’s solutions. Additionally, we derive a few sufficient criteria that guaran-
tee the presence and consistent asymptotic stability of the system under investigation’s
positive equilibrium point[8]. Destructive diseases and phloem-feeding insect herbivores,
especially the brown planthopper (BPH, Nilaparvata lugens), pose a serious threat to the
production of rice, a staple crop in many parts of the world. The molecular basis of rice’s
resistance to BPH is still mostly unknown, even though numerous BPH resistance genes
have been identified[9]. The Bph15 gene has been widely used in rice breeding because
of its capacity to provide resistance to the brown planthopper (BPH; Nilaparvata lugens
St̊al). However, nothing is known about the molecular mechanism by which Bph15 con-
fers resistance to BPH in rice[10]. According to the author, a superior resistance gene
that developed long ago in an area where planthoppers are year-round residents may
prove to be highly beneficial for managing agricultural insect pests[11]. We also go over
the latest findings on biological control, trap cropping, and cultural management as ways
to manage brown planthoppers. The development of environmentally friendly integrated
management strategies for brown planthoppers is aided by these investigations[12]. One
of the rice insects that causes significant damage in Asian countries is the brown plan-
thopper (BPH), a monophagous migratory phloem-sucking bug (Nilaparvata lugens St̊al).
Over the past few years, this pest has wreaked havoc in some regions of India, Indonesia,
China, Japan, Taiwan, Vietnam, and the Philippines due to high nitrogen and deliberate
insecticide use along with rising temperatures[13]. Aquatic plants contribute significantly
to the structure, function, and service delivery of aquatic ecosystems and fill a variety of
ecological tasks. Research on aquatic plants is still booming because of their established
significance in aquatic environments. The variety of nations and continents represented
by conference attendees and authors of the papers in this special issue highlights both
the numerous issues that this emerging field of study must deal with and the worldwide
significance of aquatic plant research in the early twenty-first century[14].

2 Model Formulation

We consider a system of fractional-order differential equations to model the interac-
tions among aquatic plants, herbivores, and plant diseases. Let P (t) represent the plant
biomass, H(t) the herbivore population, and I(t) the infected plant biomass at time t.
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The model is defined as:

DαP (t) = rP (t)

(
1− P (t) + I(t)

K

)
− aP (t)H(t)

1 + bP (t)
− βP (t)I(t),

DαH(t) =
cP (t)H(t)

1 + bP (t)
− dH(t),

DαI(t) = βP (t)I(t)− γI(t),

(1)

where Dα denotes the Caputo fractional derivative of order α (0 < α ≤ 1), and the
parameters are defined as follows:

• r: intrinsic growth rate of the plant population,

• K: carrying capacity of the environment,

• a: maximum consumption rate of herbivores,

• b: half-saturation constant of herbivores,

• β: transmission rate of the disease,

• c: conversion efficiency of consumed plant biomass into herbivore biomass,

• d: natural death rate of herbivores,

• γ: recovery or death rate of infected plants.

3 Boundedness Analysis

To ensure the model’s biological feasibility, we must demonstrate that solutions remain
non-negative and bounded for all t ≥ 0. The steps are as follows:

1. Non-Negativity: The fractional-order derivatives DαP (t), DαH(t), and DαI(t)
are non-negative if the initial conditions P (0), H(0), and I(0) are non-negative.
Using comparison theorems, we ensure that no trajectory exits the non-negative
orthant.

2. Boundedness of P (t): From the first equation in (1), the plant population is reg-

ulated by a logistic growth term rP (t)(1− P (t)+I(t)
K

) and consumption by herbivores
and diseases. By constructing a suitable comparison system, we show that P (t) is
bounded above by K.

3. Boundedness of H(t): For the herbivore population, the term cP (t)H(t)
1+bP (t)

ensures

that H(t) cannot grow unbounded. By considering the death rate dH(t) and as-
suming bounded P (t), we establish an upper bound for H(t).

4. Boundedness of I(t): The infected plant biomass I(t) is controlled by the bal-
ance between infection (βP (t)I(t)) and recovery or death (γI(t)). Using similar
arguments, we show that I(t) remains bounded.

5. Lyapunov Functions: For a more formal proof, we construct a Lyapunov function
V (P,H, I) that satisfies dV

dt
≤ 0, indicating bounded trajectories within a compact

region of the state space.

Thus, the system solutions remain biologically feasible for all t ≥ 0.
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4 Equilibrium Points

The equilibrium points of the system are obtained by setting the right-hand sides of the
equations in (1) to zero. Let (P ∗, H∗, I∗) denote the equilibrium values of P (t), H(t),
and I(t), respectively. Solving the equations:

0 = rP ∗
(
1− P ∗ + I∗

K

)
− aP ∗H∗

1 + bP ∗ − βP ∗I∗,

0 =
cP ∗H∗

1 + bP ∗ − dH∗,

0 = βP ∗I∗ − γI∗,

(2)

results in the following steps:

1. From the third equation:

I∗ =
βP ∗I∗

γ
,

which simplifies to

I∗ = 0 or P ∗ =
γ

β
.

2. Substitute I∗ = 0 into the first and second equations to analyze the equilibrium
points without infection:

0 = rP ∗
(
1− P ∗

K

)
− aP ∗H∗

1 + bP ∗ ,

0 =
cP ∗H∗

1 + bP ∗ − dH∗.

Solving these equations gives the equilibrium points (P ∗, H∗, I∗) under the disease-
free condition.

3. For P ∗ = γ
β
, substitute this value into the first and second equations, including

I∗ ̸= 0, to analyze the equilibrium points with infection.

The explicit solutions depend on the parameter values and must be computed numerically
in most cases.

5 Stability Analysis

5.1 Local Stability

To assess the local stability of the equilibrium points, we linearize the system (1) around
an equilibrium point (P ∗, H∗, I∗). Let the perturbations be defined as:

P (t) = P ∗ + δP, H(t) = H∗ + δH, I(t) = I∗ + δI,

where δP , δH, and δI are small deviations from the equilibrium. Substituting these into
(1) and neglecting higher-order terms, we obtain the linearized system:DαδP

DαδH
DαδI

 = J

δPδH
δI

 ,
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where J is the Jacobian matrix evaluated at (P ∗, H∗, I∗). The Jacobian matrix is given
by:

J =

∂f1
∂P

∂f1
∂H

∂f1
∂I

∂f2
∂P

∂f2
∂H

∂f2
∂I

∂f3
∂P

∂f3
∂H

∂f3
∂I

 ,

where f1, f2, and f3 correspond to the right-hand sides of the equations in (1).
The eigenvalues of J determine the local stability:

• If the real parts of all eigenvalues are negative, the equilibrium point is locally
asymptotically stable.

• If any eigenvalue has a positive real part, the equilibrium is unstable.

5.2 Global Stability

To analyze global stability, we construct a Lyapunov function V (P,H, I), satisfying:

V (P,H, I) > 0, V (P ∗, H∗, I∗) = 0,
dV

dt
≤ 0.

An example Lyapunov function for this system could be:

V (P,H, I) = (P − P ∗)2 + (H −H∗)2 + (I − I∗)2.

Taking the derivative along system trajectories, we compute:

dV

dt
= 2(P − P ∗)DαP + 2(H −H∗)DαH + 2(I − I∗)DαI.

Substituting the system equations (1), we show that dV
dt

≤ 0. If this condition is satisfied,
the equilibrium is globally asymptotically stable.

6 Bifurcation Analysis

We explore the system’s bifurcation behavior by varying key parameters such as the
disease transmission rate β or the fractional order α.

6.1 Procedure

1. Identify a bifurcation parameter, e.g., β, and fix all other parameters.

2. Gradually vary β and compute the equilibrium points of (1).

3. Analyze the stability of these equilibria by computing the Jacobian matrix and
eigenvalues.

4. Detect bifurcation points where the stability changes (e.g., eigenvalues cross the
imaginary axis).
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6.2 Numerical Continuation

Using numerical continuation methods, we track equilibrium solutions as the bifurcation
parameter changes. For example, employing software tools like AUTO-07p or MATLAB,
we generate bifurcation diagrams that reveal critical transitions such as:

• Hopf Bifurcation: Emergence of periodic solutions when a pair of complex-
conjugate eigenvalues crosses the imaginary axis.

• Saddle-Node Bifurcation: Appearance or disappearance of equilibrium points
when a real eigenvalue crosses zero.

7 Numerical Simulations

To validate the theoretical results, we perform numerical simulations of the fractional-
order system (1).

7.1 Numerical Method

For fractional-order systems, we use numerical methods like the Grünwald-Letnikov or
Adams-Bashforth-Moulton schemes. The algorithm involves:

1. Discretize the fractional derivative using a suitable approximation.

2. Implement the discretized equations in a computational software (e.g., MATLAB,
Python).

3. Set initial conditions (P (0), H(0), I(0)) and parameter values (r,K, a, b, β, c, d, γ).

4. Simulate the system over a time interval [0, T ] for various parameter values.

7.2 Example Simulation

For example, we simulate the system with the following parameter set:

r = 0.5, K = 100, a = 0.2, b = 0.1, β = 0.02, c = 0.1, d = 0.05, γ = 0.03, α = 0.9.

The results are presented as:

• Time Series: Plots of P (t), H(t), and I(t) over time.

• Phase Portraits: Trajectories in the (P,H) and (P, I) planes to visualize system
dynamics.

• Bifurcation Diagram: A plot of equilibrium values versus β showing stability
changes.
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7.3 Interpretation

The numerical results illustrate scenarios such as:

• Stable coexistence of plants, herbivores, and infected plants.

• Oscillatory behavior near Hopf bifurcation points.

• Impact of increasing β on the stability of equilibrium points.

These findings confirm the theoretical predictions and highlight the complex dynamics of
the system.

Bifurcation Analysis result

Saddle-Node Bifurcation:

• The plot shows the equilibrium points of the plant biomass (P) as a function of the
bifurcation parameter (β).

• When two equilibrium points collide, it marks the saddle-node bifurcation, where
the system transitions between having two equilibrium points to none.

• The bifurcation point is indicated by a dashed line, where the two equilibrium
curves meet and annihilate each other.

• This code assumes that there are two equilibrium points for each value of β within
the valid range. In the case of more complex systems, you may need to adjust the
detection of equilibrium points.

Hopf-Bifurcation:

• The real part of the eigenvalue is plotted to show when the eigenvalue crosses from
negative to positive (indicating a potential Hopf bifurcation).

• The imaginary part of the eigenvalue is plotted to show oscillatory behavior.

• Hopf bifurcation points are marked on the plots where the real part crosses zero
and the imaginary part is non-zero.

• assumes this system has only one pair of complex conjugate eigenvalues. If more
eigenvalues exist, additional logic is needed to handle multiple eigenvalue pairs.

• The Hopf bifurcation is detected when the real part of an eigenvalue crosses zero,
and the imaginary part is non-zero. This transition marks the onset of oscillatory
behavior.

8 Graph

8.1 Figure 1: Time series 3D plot for a fractional-order system

Parameters for the system
r = 0.5; K = 100; a = 0.2; b = 0.1; β = 0.02; c = 0.1; d = 0.05; α = 0.9;
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8.2 Figure 2: Define parameters (these are constants through-
out the bifurcation analysis

Parameters for the system
r = 0.5; K = 100; a = 0.2; b = 0.1; c = 0.1; d = 0.05;

8.3 Figure 3: Bifurcation Diagram for the Plant-Herbivore-
Disease Model

Parameters for the system
r = 0.5; K = 100; a = 0.2; b = 0.1; c = 0.1; d = 0.05; I0 = 5;

8.4 Figure 4: Graph for Global Stability

Parameters for the system
a = 1; b = 0.1; c = 1.5; d = 0.075;

9 Conclusion

This study presents a fractional-order model capturing the dynamics of aquatic plants,
herbivores, and plant diseases. Through boundedness, stability, and bifurcation analyses,
we provide a comprehensive understanding of the system’s behavior under various condi-
tions. Our findings underscore the importance of considering fractional-order dynamics
in ecological modeling, offering a more nuanced perspective on ecosystem interactions.
By varying key parameters, such as the disease transmission rate β or the fractional order
α, we investigate the system’s bifurcation behavior. Employing numerical continuation
methods, we detect critical parameter values where qualitative changes in system dy-
namics occur, such as the emergence of periodic solutions or shifts in stability. These
bifurcations provide insights into how small changes in parameters can lead to significant
alterations in ecosystem behavior.
For global stability analysis, we construct appropriate Lyapunov functions. If a Lyapunov
function can be found such that its derivative along system trajectories is non-positive,
we can conclude global stability of the equilibrium point. This approach ensures that so-
lutions converge to the equilibrium from any initial condition within the feasible region.
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Figure 1: Time series 3D plot for a fractional-order system

Figure 2: Define parameters (these are constants throughout the bifurcation
analysis
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Figure 3: Bifurcation Diagram for the Plant-Herbivore-Disease Model

Figure 4: Graph for Global Stability
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