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Abstract:-This study aims to evaluate advanced feature combination techniques regarding 

their impact on classification accuracy. The findings demonstrate that employing different 

advanced feature combination methods proves highly effective in practical applications. As 

additional features are systematically incorporated, classification accuracy improves. Our 

assessment of various advanced feature combination methods utilizes three diverse datasets: 

Xerox 7, UIUCTex, and Caltech-101, each comprising a variety of object types and 

classifiers.Comparing these methods, we find that the dominant set-based approach exhibits 

exceptional performance on the UIUCTex and Caltech-101 datasets, achieving classification 

accuracies of 86.44% and 86.55%, respectively. Conversely, for the Xerox 7 dataset, the 

clustering method excels, achieving a classification accuracy of 90.3%. 

 

Keywords : Feature Combination, Classification Accuracy,MKL, CV Weight 

1. Introduction 

The accuracy and robustness of object classification systems are significantly improved by 

feature combination. Object classification entails the identification and categorization of 

objects within digital images or videos based on their visual features in the field of computer 

vision and machine learning. These characteristics may encompass basic descriptors, such as 

colour and texture, as well as more intricate ones, including shape, borders, and patterns. 

 

The initial step in the object classification process is the extraction of pertinent features from 

the raw data, which may consist of images or recordings. These attributes function as 

distinguishing characteristics that differentiate one object from another. Nevertheless, no 

single feature descriptor may be sufficiently discriminative or robust in all situations. 

Therefore, the classification performance can be substantially enhanced by integrating 

multiple features, which captures various aspects of the objects and mitigates the effects of 

noise and variability. 

 Advanced methods of feature combination in object classification encompass a variety of 

sophisticated techniques designed to enhance classification accuracy and robustness by 

effectively integrating multiple types of features. These approaches leverage diverse feature 

representations and employ advanced algorithms to extract and combine pertinent 

information from data. By doing so, these methods aim to create comprehensive and 

discriminative feature sets that improve the performance of object classification systems 

across different applications and scenarios.In this paper, we evaluate the classification 
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accuracy of a variety of advanced feature combination methods using three distinct datasets 

that that contain a variety of object types and classifiers. 
 

The structure of the paper is as follows. Section 2 provides a concise overview of significant research 

advancements in advanced feature combination and demonstrates how these advancements serve as 

inspiration for our work in this study. Section 3 presents a range of advanced approaches for 

combining features, along with their respective algorithms. These methods are employed to assess the 

accuracy.Various classifier used are explained in section 4. The experimental results and analysis are 

presented in Section 5. Section 6 serves as the concluding section and future workof the paper. 

 

 

2. Literature Survey 

 
A new boosting-based feature combination method [1] integrates features. Variation boosting trains 

weak classifiers on numerous sets of features and combines them through weighted voting to produce 

a classifier output for each round, unlike standard boosting approaches. Studies in [1] show that this 

strategy incorporates feature selection, communication, and classifier learning, improving 

classification performance across datasets. 

 

Schapire created boosting in 1990 to augment weak learning algorithms. AdaBoost grew from it. 

AdaBoost utilises weighted voting across two classes to combine poor classifiers and improve 

boosting methods. AdaBoost applies a uniform feature vector to weak classifier components, even 

when features fluctuate, yet each training instance has a fixed-length feature vector with ordered 

characteristics. In some cases, AdaBoost outperforms other approaches [1]. Each cycle, this boosting 

technique uses system-encoded characteristics to build a final classifier from several weak classifiers 

applied to data from each feature vector. Each iteration determines feature combinations using 

weighted voting. AdaBoost uses unreliable learning methods like decision trees and neural 

networks.Generic boosting works across classes. (unlike AdaBoost) surpasses conventional 

classification algorithms on three datasets. Boosting, feature extraction optimisation, and neural 

network parameter adjustment boost performance. 

 

Other study [2] shows that boosting is reliable and persistent in complex multi-class scenarios. Basics, 

MKL, and boosting are covered in [2], along with advanced kernel feature combination. They 

introduce two MKL-inspired decision function approaches, LP-β and LP-B, along with LPBoost 

formulations. Next, apply these strategies to specific datasets.Mixed coefficients affect class 

attributes,  but not in multi-class situations, says MKL. Evaluations treat all features equally. The LP-

β technique chooses three of seven features, while other methods seek to include all. Oxford flower 

dataset trials show MKL and LP-β algorithms effectively remove irrelevant information. Over time, 

CG-Boosting decreases. 

 

[2] employs boosting to combine features. In early Oxford flower dataset experiments, MKL with 

boosting can find significant kernels from many uninformative ones. This strategy's efficacy depends 

on attribute class identification. SIFT features employing MKL and CG-Boost's pyramid kernels 

outperform baseline approaches on Caltech101 and Caltech256. These beat PHOG pyramid kernels, 

CG-Boost, and MKL. The results of the LP-β (Boosting) technique were better than LPBoost and 

comparable to Caltech 101 MKL and baselines for both combinations. Additionally, LP-β has a 

runtime equivalent to MKL, indicating similar efficiency.The kernel combination in [3] incorporates 

prior knowledge, and classification performance affects attribute weight.  Features are combined 

using kernel-based classifiers and bag-of-words histograms. Factorable features are weighted by 

predictive strength to effect forecasts. Features, kernels, and expertise improve intermediate 

data normalisation. Two approaches to use historical data: 
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Knowledge-weighted linear kernels 

 

knowledge-weighted product kernel 

 

Knowledge-weighted linear kernels may become product kernels when interacting with average 

kernels. The SVM classifier gets this kernel immediately. Extracting small picture portions requires 

the Harris-Laplace detector and careful sampling. The contrary, C-SIFT, rgSIFT, and modified colour 

SIFT explain these locations. The most successful feature combination method was KWPK. With 

little processing power, it can match cutting-edge approaches. 

 

MKL analyses prefer KWPK and KWLK over product and average kernels [3]. MKL performs better 

in some datasets than KWPK and KWLK in chair, bus, and comparable datasets. Product and KWPK 

outperform KWLK and average. KWPK and KWLK perform similarly and competitively on the 

validation dataset, whereas MKL outperforms KWPK. Product and average kernels fail. KWPK and 

KWLK outperform MKL in speed and performance. MKL heavily invests on coefficient knowledge, 

while KWPK and KWLK train SVM classifiers and evaluate features. Pre-calculated kernels for each 

feature keep the coefficient constant during training, saving time without affecting performance. 

 

Multiple descriptors and detectors enhance classification and feature combination [4]. Four datasets 

with different object categories are used to test how feature-related factors affect merging. PHOG, 

LBP, GIST, Gabor, RFS filter. Combining and assessing feature kernels: 

 

Each classification feature's discrimination was assessed using the mean recognition rates from ten 

training-testing splitsEach scenario's ascending, falling, and mixed modes depend on discriminative 

strength. 

 

Sequentially adding features tests feature combinations.Multiple powerful features exceed the best 

solo feature in all four datasets. Strong and weak qualities should cooperate, while weaker traits harm 

mixed mode performance. Sparse MKL or LP-β solutions [2] emphasise specific points in the final 

kernel combination. Feature combinations affect classification performance more than kernel 

combinations. Kernels behave like tops yet share many properties. This work developed a better 

kernel modification-based optimisation approach.Spatial pyramid research reveals levels boost 

performance but not performance. The kNN architecture offers average-product kernel compatibility, 

as widely investigated in [5]. Selection-Based Average Combination (SBAC) outperforms normal 

average combination in experiments [4]. builds on kNN wins. This combo descends with a climb, 

peak, and fall pattern. This pattern encourages kNN k selection caution. Cross-validation ensures 

feature class identification, affecting layout. SBAC excels on Caltech-101, Flower-17, Scene-15, and 

Event-8. The MKL combination is above average [2].MKL efficiency is adjustable [6, 7, 8, 9]. 

Innovative non-linear kernel fusing approaches like [10] boost performance. SMO accelerates training 

in large datasets and kernel spaces, especially for -norm Multiple Kernel Learning (MKL), where 

kernels boost performance [14]. Soft Salient Coding (SSaC) addresses SPM SaC information 

suppression [15]. Multiple encoding and pooling algorithms improve image categorization.According 

to [15], MKL's adaptive encoding and pooling increase image classification. In particular, SSaC 

prevents the original SaC methodology from suppressing information.More SSaC image data helps 

image categorization.Encoding, pooling, and code quality testing.Multiple regularisation approaches 

and additional training data improve MKL classification.HOG descriptors help SSaC experimentally 

beat GSaC and regular SaC. Multiple descriptions and category training examples are handled by 

SSaC. MKL  with -norm performance needs lots of training data, confirming regularisation. With 

enough training data, MKL outperforms other algorithms in feature relevance across categories.A new 

feature processing method outperforms classification and reduces feature redundancy [16]. Study 

features are processed using specific procedures. These methods integrate features, locate redundant 

features, convert numerical feature values to categorical ones, and find hidden structures in original 

and enhanced data. The recommended method surpasses SVM in classification accuracy while 

keeping an equal ROC benchmark, according to UCI repository data. 
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Literature surveys demonstrate this research gap: 

 

Despite advances in object categorization using feature extraction, feature fusion research and 

comparison are lacking. Many research focus on individual feature extraction rather than merging 

features for classification improvement.   

There is little study on domain-specific feature combinations. The image databases include medical, 

satellite, and natural scene images. Strategies that integrate domain-specific traits to address domain-

specific challenges are understudied. 

  

This work investigates and evaluates advanced feature combination strategies for object classification 

in image datasets to fill the research gap 

 
3. Advanced Feature Combination Methods and Algorithms 

 
Feature combination in object classification refers to the process of integrating multiple types or 

sources of features derived from input data, such as images, with the goal of enhancing the accuracy 

and robustness of object classification algorithms. 

3.1 Advanced Methods 

Advanced methods of feature combination in object classification encompass a range of sophisticated 

techniques aimed at improving classification accuracy and robustness by integrating multiple types of 

features effectively. These methods leverage diverse feature representations and advanced algorithms. 

These methods leverage diverse feature representations and advanced algorithms to extract and 

combine relevant information from data. Here's an overview of some advanced approaches:  

  

A) CV Weight Method  

The CV Weight Method of Feature Combination is a methodical way to combining features, which is 

based on their relevance values obtained from cross-validation (CV). Below is a comprehensive 

algorithmic framework for implementing this method: 

 Algorithm for CV Weight Method of Feature Combination 

1. Input: 

o Dataset: Contains objects to be classified and extracted features. 

o Feature Extraction: Obtain initial feature vectors for each object. 

2. Cross-Validation Setup: 

o Choose a suitable cross-validation strategy (e.g., k-fold cross-validation) depending 

on the size and nature of your dataset. 

o Split the dataset into training and validation sets according to the chosen CV strategy. 

o  

3. Feature Importance Calculation: 

o Initialization: 

 Select a machine learning model suitable for your classification task (e.g., 

Random Forest, Gradient Boosting Machine). 

 Define a metric for evaluating model performance (e.g., accuracy, F1-score). 

 

o Cross-validation loop: 

 For each fold in the cross-validation: 

• Train the model on the training data subset. 

• Evaluate the model on the validation data subset using the chosen metric. 
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• Compute feature importance scores specific to the trained model. Methods 

for feature importance calculation include: 

o Mean Decrease Accuracy: Measure how much model performance 

(e.g., accuracy) drops when a feature is randomly shuffled. 

o Gini Importance: Measure based on the decrease in impurity in 

decision trees. 

o Permutation Importance: Assess the impact of feature shuffling on 

model performance. 

• Aggregate feature importance scores across all folds to get a robust 

estimation. 

4. Feature Combination Using Weights: 

o Normalize the feature importance scores (optional) to ensure they sum up to 1 or have 

meaningful relative weights. 

o Combine the original feature vectors into a single combined feature vector for each 

object using the computed importance weights: 

 Weighted Average: Combine numerical features by taking a weighted 

average, where weights are determined by their importance scores. 

 Feature Selection: Select a subset of features based on their importance 

scores if using a sparse model or if reducing dimensionality is beneficial. 

5. Clustering or Classification: 

o Apply clustering or classification algorithms to the combined feature vectors: 

 Clustering: Group similar objects together based on the combined feature 

representations. 

 Classification: Train a classifier using the combined feature vectors to 

predict object labels. 

6. Output: 

o Obtain clusters or predicted labels for each object based on the chosen algorithm. 

By amalgamating features based on their significance weights, you concentrate on the most 

enlightening portions of the data, potentially enhancing model accuracy and generalisation.  

 By employing feature selection based on relevance ratings, it is possible to decrease the 

dimensionality of the data, resulting in quicker training times and more straightforward 

models.  Gaining an understanding of the features that have the biggest impact on predictions 

might offer valuable insights into the fundamental qualities of the objects being classified.  
 

B) MKL Method 

Using the MKL (Multiple Kernel Learning) approach of feature combination, several kernels 

(representing several feature spaces or transformations) are combined into a single kernel matrix. 

Subsequently, this unified kernel matrix finds application in a variety of machine learning problems, 

such clustering and classification. The MKL method of feature combining is implemented as follows 

algorithmically: 

Algorithm for MKL Method of Feature Combination 

1. Input: 

o Dataset: Contains objects to be classified and extracted features. 

o Multiple Kernels: Kernels representing different feature spaces or transformations. 

These could be based on different feature extraction techniques or representations. 

2. Initialization: 

o Choose a set of kernels( K1,K2,…,Km)each corresponding to a different feature space 

or transformation. 
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o Initialize weights α=(α1,α2,…,αm) for combining the kernels. These weights determine 

the contribution of each kernel to the combined kernel matrix. 

3. Objective Function: 

o Define an objective function that balances between the fit to the data and the 

complexity of the model. Typically, this involves optimizing over the weights α  

 

 where L is a loss function (e.g., hinge loss for SVM, cross-entropy for logistic regression), f(xi) is 

the predicted output for object xi. R(α) is a regularization term on the weights α and λ controls the 

regularization strength. 

4. Optimization: 

o Solve the optimization problem to find the optimal weights α\alphaα that minimize 

the objective function. This step involves: 

 Using techniques such as gradient descent, coordinate descent, or convex 

optimization methods depending on the chosen loss function and 

regularization. 

5. Combined Kernel Matrix Construction: 

o Construct the combined kernel matrix Kcombined using the optimized weight  α .  

 

 Where   kj is the matrix corresponding to the jth kernel. 

6. Machine Learning Task: 

o Use the combined kernel matrix Kcombined in a machine learning task such as: 

 Classification: Train a classifier (e.g., SVM, kernel-based methods) using 

Kcombined  as the kernel matrix. 

 Clustering: Apply clustering algorithms (e.g., kernel k-means) using K 

combined. 

Choose kernels that reflect distinct aspects or representations of the data, such as Gaussian kernels for 

various feature representations or domain-specific kernels.The regularisation parameter λ should be 

adjusted to achieve a balance between preventing overfitting and fitting the data.Employ effective 

optimisation strategies that are appropriate for the objective function and constraints that have been 

selected. 

 

 The potential to enhance classification or clustering performance is achieved by combining multiple 

kernels, which enables the capture of complementary information from distinct feature spaces.By 

selecting suitable kernels and adjusting weights, the method can be customised to accommodate 

various datasets and duties. MKL is theoretically grounded in learning theory, which offers a 

principled approach to the integration of feature representations. 
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C) Dominant Set based  Method 

The Dominant Set based feature combination approach is a methodology employed in clustering and 

feature selection. Its purpose is to find and leverage dominant features that make a substantial 

contribution to the clustering process. Below is a systematic framework for implementing this 

method: 

 

Algorithm for Dominant Set Based Feature Combination 

1. Input: 

o Dataset: Contains objects to be clustered and extracted features. 

o Similarity Measure: Define a similarity measure S(i,j) between objects i and j, often 

based on feature distances or similarities. 

2. Feature Selection: 

o Feature Extraction: Extract relevant features from each object in the dataset. 

3. Similarity Matrix Construction: 

o Construct a similarity matrix S where S(i,j) represents the similarity between objects i 

and j. This matrix is typically symmetric and can be based on feature distances or 

similarities. 

Dominant Set Identification: 

• Initialization: Start with an empty set DS=∅ 

• Iteration: 

o For each object i: 

 Compute the dominance score Dom(i) which measures how well object i can 

dominate other objects based on their similarities. This can be computed as: 

 

Add i to DS if Dom(i) is above a certain threshold or relative to other objects in the 

dataset. 

 

 Repeat the iteration until no more objects can be added to DS. 

 

   Feature Combination: 

• Extract features corresponding to objects in the dominant set DS. 

• Combine these features into a single feature vector or representation for each object in the 

dataset. This can be done using: 

o Concatenation of feature vectors from objects in DS. 

o Aggregation (e.g., averaging, weighted averaging) of features from DS objects. 
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   Clustering or Classification: 

• Apply clustering algorithms (e.g., K-means, DBSCAN) or classification models (e.g., SVM, 

Random Forest) using the combined feature vectors obtained from step 5. 

Establish a specific value for the dominance score Dom(i) that will be used to determine the 

inclusion of items in the dominant set DS.Sequentially examine each object in the dataset to 

progressively construct the dominant set according to their dominance scores.Customise the 

method of combining features (such as concatenation or aggregation) according to the 

characteristics of the features and the clustering/classification algorithm employed. 

Evaluate the quality of the clusters or classification performance by utilising suitable metrics 

such as the silhouette score for clustering and accuracy for classification. 

 

 D) Clustering Method 

The feature combination clustering method entails the clustering of data objects based on 

combined or aggregated feature representations. This method is beneficial when dealing with 

datasets that necessitate the integration of various types of features or representations in order 

to achieve effective clustering. Here is an algorithmic framework for the clustering technique 

of feature combination: 

Algorithm for Clustering Method of Feature Combination 

1. Input: 

o Dataset: Contains objects to be clustered and extracted features. 

o Feature Extraction: Extract relevant features from each object using appropriate 

techniques (e.g., HOG, SIFT for images; TF-IDF, word embeddings for text). 

2. Feature Combination: 

o Combine the extracted features into a single feature vector or representation for each 

object. This can involve: 

 Concatenation: Combine feature vectors if they are of compatible 

dimensions. 

 Dimensionality Reduction: Apply techniques like PCA, t-SNE, or 

autoencoders to merge different feature representations into a unified space. 

 Aggregation: Calculate statistical summaries (e.g., mean, median, variance) 

of feature values across different feature sets. 

3. Clustering Algorithm Selection: 

o Choose an appropriate clustering algorithm suited to the combined feature space: 

 K-means: Suitable for clusters with spherical shapes and similar sizes. 

 Hierarchical Clustering: Builds a tree of clusters that can be cut at different 

levels. 

 DBSCAN: Effective for clusters of varying shapes and densities. 

 Mean-shift: Automatically finds the number of clusters and their centers. 

4. Clustering Process: 

o Initialize the chosen clustering algorithm with the combined feature representations 

obtained from step 2. 

o Apply the clustering algorithm to group objects into clusters based on similarities in 

their combined feature representations. 

o Iteratively refine clusters based on the convergence criteria of the clustering 

algorithm. 

5. Cluster Evaluation: 

o Evaluate the quality of clusters obtained using: 

 Internal Evaluation Metrics: such as silhouette score, Davies-Bouldin 

index, or cohesion and separation metrics. 
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 External Evaluation Metrics: if ground truth labels are available, such as 

Adjusted Rand Index or Fowlkes-Mallows Index. 

6. Post-processing (Optional): 

o Refine clusters or perform post-processing steps based on domain knowledge or 

additional criteria: 

 Merge or split clusters based on further analysis of cluster characteristics. 

 Remove outliers or noise points if using density-based clustering algorithms 

like DBSCAN. 

7. Utilization: 

o Use the identified clusters for various purposes, such as: 

 Object Classification: Assign labels to clusters based on majority voting or 

centroid characteristics. 

 Anomaly Detection: Identify clusters with few members or unusual feature 

combinations. 

The integration of diverse features enhances clustering by amalgamating multiple types of 

features or representations.Utilises clusters as more precise feature representations for 

subsequent classification tasks, potentially enhancing accuracy.Capable of being adjusted to 

various forms of data and methods for extracting features, hence increasing its usefulness 

across different fields. 

 
4. Classifier algorithms used 

Our work includes several classifier methods to demonstrate their accuracy effects. 

 They are:  

 

A. KNN  

Basic instance-based KNN.A new data point's class is predicted using its K nearest 

neighbours' majority class. Number of neighbours (K) and distance metric (e.g., Euclidean 

distance) matter.KNN prediction is simple yet computationally expensive with large datasets.  

 

B. SVM  

 

SVM is a supervised learning method for classification and regression, particularly 

classification. For class splitting, SVM calculates the right hyperplane.The hyperplane's 

maximum distance from the nearest data points. Uses polynomial, RBF, or sigmoid kernel 

functions to efficiently handle non-linear decision boundaries.SVMs do well in high-

dimensional domains with more features than samples. 

 

C. Random Forest 

 

The Random Forest technique uses an ensemble learning approach. Many decision trees are 

trained by Random Forest.Each forest tree forecasts independently using bootstrap data. Final 

predictions come from aggregating all tree forecasts (most votes for classification, average for 

regression).Random Forests score feature significance, resist overfitting, and handle high-dimensional 

data. Their efficiency and scalability in machine learning make them popular.  

 

D.Adaptive Boosting  

 

AdaBoost builds strong classifiers from poor ones via ensemble learning.It constantly trains weak 

classifiers on updated data. Adjusts erroneously categorised instance weights to focus classifiers on 
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difficult cases.Poor learners improve accuracy without overfitting with AdaBoost. Classification jobs 

with several classifiers use it widely.  

 

E. Gradient Boosting 

 

Gradient Boosting Classifier (GBM) is a sophisticated ensemble learning technique for 

classification:Gradient Boosting builds decision trees that correct each other.Trees that minimise loss 

improve a loss function (typically gradient descent) and let shallow decision trees learn and forecast 

properly.Gradient Boosting performs well with complex variables. Competitions and machine 

learning use it for its adaptability and non-linear simulation.  

 

F.Bagging 

  

It increases machine learning algorithm stability and accuracy. Bagging generates dataset bootstrap 

samples. Bootstrapping samples train an independent base classifier, usually decision trees.Final 

predictions come from averaging regression base classifier predictions or voting classification 

jobs.Bagging reduces variance and overfitting by integrating predictions from multiple data subset 

models. It improves projected performance for unstable models sensitive to modest training data 

changes.  

 

G. Logistic Regression  

 

Logistic regression (LR) is a key binary classification supervised learning method.Logistic regression 

describes binary outcome probability with 0–1 values.Fitting a linear decision boundary to feature 

space divides classes.MLE and gradient descent estimate model parameters.Logistic Regression is 

simple, fast, and effective when characteristics and aim variables are linear. Many fields use it for 

binary classification due to its simplicity and efficacy. 

  

H.  Naïve Bayes Classifier 

  

The Naïve Bayes Classifier is a rapid and effective machine learning algorithm for prediction. 

Probabilistic classifiers assess object likelihood.  

 

I. Classifier Decision Tree  

 

The Decision Tree Classifier is a supervised classification and regression technique. Recursively 

partitioning data by feature values builds a decision tree.The approach chooses the best feature to split 

data at each node to maximise classification information gain or decrease regression variance. After 

training, a leaf node determines the class label (for classification) or predicted value (for regression) 

from new data points from the root.Non-linear interactions and complex decision limitations are 

evaluated via decision trees. Prune or ensemble methods like Random Forests or Gradient Boosting 

can reduce overfitting.  
 
5. EXPERIMENTAL RESULTS 

The results and discussions of this paper are the result of extensive research that was conducted using 

Python programming. The investigations were performed on a computer utilising the Ubuntu 16.04 

operating system, 4GB of memory, 500GB of storage, and a Core i5 processor. 

 

Here are three data sets that we have included.  

       Data set 1- Xerox7 

             Data set 2- UIUCTex 

                   Data set 3 – Caltech-101 
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The experimental configuration involved using 70% of the stated image sets for training and 30% for 

testing.  

 

We evaluated the classification accuracy by integrating several features to showcase the efficacy of 

feature combination. We have evaluated the same utilising diverse classifiers. The acquired outcomes 

are converted into graphs and further scrutinised. To ensure optimal outcomes, measures were taken 

to maintain system stability. 

 

5.1   

 

Classification   Accuracy 

 

 
1. Xerox7 Dataset 

The dataset [37] comprises 1776 photos categorised into seven distinct classes: Faces, buildings, trees, 

automobiles, phones, bikes, and books. The object poses exhibit a great degree of variability, and 

there is a substantial quantity of background clutter, including elements from various categories, 

which adds to the complexity of the classification challenge. 

 

 
 Table1: Xerox7 Classification Accuracy 

Feature 

Combination 

Method Used 

                                               Classifier Used 

Decision 

tree 
KNN SVM 

Random 

Forest 
AdaBoost 

Gradient 

Boosting 
Bagging 

Logistic 

Regression 

Naïve 

Bayes 

CV Weight  82.2 82.6 83.29 80.27 79.2 77.6 81 79.2 73.88 

MKL 75.1 75.9 79.21 76.21 76.1 73.9 77.53 73.2 76.23 

Dominant Set  84.7 87.5 88.44 87.44 84.7 85.5 89.44 83.11 87.25 

Clustering 87.6 89.1 88.3 86.3 88.6 86.1 90.3 84.22 81.21 
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Fig-1 Performance comparison of various Feature Combination Methods for Xerox7 dataset 

According to the data in Table 1, the highest accuracy of 90.3% was achieved using the clustering 

method with the Bagging Classifier on the Xerox7 dataset. 

 

2. UIUCTex Dataset 

The dataset[38] of 25 distinct texture classes, each consisting of 40 images. The surfaces 

exhibit varying textures mostly caused by differences in albedo (e.g. wood and marble), 

three-dimensional shapes (e.g. gravel and fur), or a combination of both (e.g. carpet and 

brick). Additionally, it exhibits notable alterations in perspective, unregulated lighting, 

random rotations, and variations in scale within each category.  
 

 Table 2 :    UIUCTex Dataset Classification Accuracy 

Feature 

Combination 

Method Used 

                                               Classifier Used 

Decision 

tree 
KNN SVM 

Random 

Forest 
AdaBoost 

Gradient 

Boosting 
Bagging 

Logistic 

Regression 

Naïve 

Bayes 

CV Weight  79.6 82.6 81.25 80.25 79.2 79.6 83 74.2 71.88 

MKL 73.2 74.5 82.21 73.21 78.1 72.9 74.52 73.2 76.23 

Dominant Set  86.5 87.5 86.44 84.45 83.7 84.5 86.21 82.11 81.25 

Clustering 86 87.1 86.3 85.3 85.6 84.1 84.3 83.22 84.21 

 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 34 ISSUE 6 2024

Page No: 601



  

Fig-2 Performance comparison of various Feature Combination Methods for UIUCTex Dataset  

According to the data in Table 2, the highest accuracy of 86.44% was achieved using the 

dominant set based feature combination method with the SVM Classifier on the UIUCTex 

dataset. 

 

3. Caltech-101data set 

The dataset [39] comprises a total of 9,146 photos, distributed across 101 distinct item 

categories, along with an extra background/clutter category. The   category ranges from 31 to 

800. Categories that are commonly and widely recognised, such as faces, typically have a 

greater quantity of photos compared to other categories.  
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 Table 3: Caltech 101 data set Classification Accuracy 

 

 

 

 

Fig 3 Performance comparison of various Feature Combination Methods for Caltech 101 Dataset  

According to the data in Table 3, the highest accuracy of 86.58% was achieved using the dominant 

set based feature combination method with the Bagging Classifier on the Caltech 101 Dataset 

 

                                           

 

 

 

Feature 

Combination 

Method Used 

                                                Classifier Used 

Decision 

tree 
KNN SVM 

Random 

Forest 
AdaBoost 

Gradient 

Boosting 
Bagging 

Logistic 

Regression 

Naïve 

Bayes 

CV Weight  73.6 80.6 82.25 81.25 73.2 73.6 83.33 71.2 77.88 

MKL 74.2 81.9 83.21 72.21 71.1 73.9 74.51 72.2 74.23 

Dominant Set  81.5 85.5 85.44 83.11 81.7 84.5 86.58 85.12 84.23 

Clustering 83.21 75.1 85.3 85.37 77.62 84.11 82.2 78.22 72.21 
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 Table 4   : Running Time Copmparision of by different classifiers for different datasets 

Method used Xerox7 UIUCTex 

 

Caltech-101 

 

CV Weight  171.6 112.2 172.25 

MKL 272.2 323.9 274.21 

Dominant Set  97.9 94.5 112.43 

Clustering 83.4 88.8 94.12 

 

 

 

Fig 4   Running Time Copmparision for different feature combination method on different dataset 

According to the data in Table 4, the MKL technique has the longest running time among all the 

data sets. This could be attributed to the enlargement of the feature matrix, which results in 

increased processing time.Clustering method takes minimum running time in all the datasets. 

 

6. Conclusion & Future Work 

 

The findings indicate that combining features greatly improves the accuracy of classification 

in real-world scenarios. Consistently incorporating new features in a step-by-step manner 

enhances performance. Therefore, these systems provide useful functionality and can be 

effectively used in various everyday situations. By optimising several parameters that control 
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feature integration, we may improve the results of applications even more. The efficacy of 

classification accuracy is intricately linked to the deliberate management of various factors, 

emphasising the significance of strategic handling. 

Future feature combination for object classification research should pursue various possible 

avenues. Studying attention mechanisms could improve feature integration by emphasising 

informative features at different categorization phases. Hierarchical feature fusion approaches 

like pyramidal pooling or nested feature extraction should be researched to capture local 

details and global context. Flexible feature combination strategies that adapt fusion 

techniques to input features or learning stages can improve flexibility and performance. 

Graph Neural Networks (GNNs) could improve classification accuracy by using relational 

information between features. Bayesian uncertainty modelling can improve robustness in 

uncertain or noisy situations. Feature integration techniques that align features with high-

level semantic ideas may increase interpretability and performance. Meta-learning and cross-

modal feature fusion for optimised feature combining across datasets are also promising. 

Finally, viable deployment-friendly real-time feature integration mechanisms must be 

developed. All of these methods strive to improve feature combination in object 

categorization. 
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