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Abstract: The target of this paper is to define the operator of - derivative based upon the Borel
distribution and by using this operator, we obtain the coefficient bounds, inclusion relations,

extreme points and some more properties of defined class.
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1. 1 Inroduction.
Let A denote the class of functions of the form
f(z)=z+ianz” (1.1)
n=2
which are analytic in the open unit disk U = {z : |z| < 1} and normalized by f(0)=0, f'(0)=1.

Let S be the subclass of A consisting of univalent functions f(z) of the form (1.1). Further

denote by T the subclass of A consisting of functions of the form
f(z2)=z-)a,z"(a,>0) (1.2)
n=2

introduced and studied by Silverman [7].
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For g(z)=z+ anz” , the Hadamard product (or convolutions) of f'and g is defined by

n=2

(f*g)z=z+abz",zeU (1.3)

The elementary distribution such as the Poisson, the Pascal, the Logarithmic, the Binomial have
been partially studied in the Geometric Function Theory from a theoretical point of view (see

[1,2,5,6].

A discrete random variable x is said to have a Borel distribution if it takes the values 1,2,3,::-

-2 -2 2,-31
. el e 21e 9A%e
with the probabilities —,

1! 21 3!

, -+, respectively, where A is called the parameter. Very

)

recently, Wanas and Khuttar [9] introduced the Borel distribution (BD) whose probability mass

function is

1)@ 1g—4e
P(x = Q) = %,Q = 1’2'3’...

Wanas and Khuttar [9] introduced a series M(4; z) whose coefficients are probabilities of the

Borel Distribution (BD)

[l(k _ 1)]k—ze—/1(k—1)

M4 z) =z+ zk, (0<21<1)
; (k—1)!
=z+ ) o, DzZK,(0<21<1), (1.4)
,Zz .

where

[ﬂ(k _ 1)]k—ze—/1(k—1)
(k—1)!

o (4) =

We define a linear operator B(4; z)f: A — A as follows:

BL2)f(z) =MAz2)*f(2)

[oe)

_ k-2 ,-A(k-1)
:Z+Z[/1(k D] %e

D a.zk, (0<21<1).
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Srivastava [8] made use of various operators of g- calculus and fractional g- calculus and
recalling the definition and notations. The g- shifted factorial is defined for 4,q € C and n €
Ny = N U 0 as follows:

(e = 1, tor'k=1,
VE=Y 1-X0)1-2g)-(1-Ag*1), forkeN.

By using the q-gamma function I7(z), we get

(1-q*,(A+k)

(a%a), = D) (k € No),
where (see [8 ])
m@=uﬂWﬂ%%?<MKn.

Also, we note that
% @e=] [a-2¢9 da1<D
k=0

and, the g- gamma function I3 (z) is known
I(z+ 1) = [z],01,(2),
where[k], denotes the basic - number defined as follows:

k

= -
]——qq " for k € C,
{k]q == = :
1+ > ¢, forkeN
7=l (1.5)

Using the definition formula (1.5) we have the next two products:

(1) For any non-negative integer k, the g-shifted factorial is given by
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]-7 for k = U
[k]ql = k .
Hn:l[n]q& for k € N.

(i1) For any positive number 7, the g- generalized Poccammer symbol is defined by

. 1, for: e — 1,
Pl = e _
Ly Hnj:, '[n]y, for k eN.

It is known in terms of the classical (Euler’s) gamma function I"(z), that
I;(z) > T'(z) asq—> 1"

Also, we observe that

(a%q),
qlir?—{a — )k} = Wi

For 0 < q < 1, the g- derivative operator [8 ] (see also [9] ) for B(4; z) f is defined by

_ B4 2)f (2) - B4 2)f (92)
z(1-q)

Ak—l k-2 —/1(1( 1)
_1+Z [AC (13_1)' apz®¥l, (0<A1<1,z€E),

D,(B(LDf(2))

where

1—qgk —
[k]q:z1 =1+ q’, [0,q]:=0
—q :g;

For9Y > —1and 0 < g < 1, we defined the linear operator %j’q f:A— Aby

BIVf(2) * Nogr1(2) = 2Dy (B(h 2)f (2)),

where the function N ,4is given by
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[ee)

[19 + 1]q,k—1
Nq,19+1(z) =z + ZWZ}(' z €E.
k=2 a

A simple computation shows that

o, .o o [kl [A(k — 1)]k~2e=Ak=D
B f(2): _z+kz=2 BT o (D) a.2"
=z+ ) B @, (1.6)

where

[k],! [A(k — 1)]¥"2e=A0D
[9 + 1]g -1k — D!

B(k) = (1.7)

and0 <1<1,9>-10<qg<1,z€E.

From the definition relation (1.6), we can easily verify that the next relations hold for all f € A:

() [9+ 11,8y (2) = [91,8, " f(2) + ¢°zD, (B " f(2)), z€E

/1(k _ 1)]k—ze—/1(k—1)
(9 + Dy

apz®, z€E.

() RYF@):= Im B () = 24 ) 1
k=2

Now using above differential operator, we define the following subclass of 7.

Definition 1.1. Let T, (a, 8,9, 4) be the subclass of T consisting of functions which satisfy the

conditions

2Dq (B, (2))
BzD,(B)f(2)) + (1 — BB f (2)

(1.8)

forsomea,f (0, <1),0<A1<1,9>—-1land0<q<lI.

The aim of this paper is to define the operator of g- derivative based upon the Borel distribution
and by using this operator, we obtain the coefficient bounds, inclusion relations, extreme points

anf some more properties of GFT.

PAGE NO: 721



Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

2 Coefficient bounds
Theorem 2.1. A function f(z) defined by (1.8) is in the class T, (a, 5,9, 1). if and only if

Z B a[(1 - af)[kly + af —a] <1-—a, 2.1)
k=2

where, B (k) is defined in (1.7).

Proof. Suppose f € T,(a, §,9,4). Then

[ 2Dy (BYf (2)) } o
BzD,(B)f(2)) + (1 — BB f (2)

ER{ — Xk=2 B(K)[k]qaz" }
Blz - TR B(k)[ lqaz] + (1 = B)lz - T, B(k)axz"]

> Q,

m{ z = Y=y Bk)[k]qa,z" }
- ¥, Blk)apz*[B([k], — 1) + 1]

Letting z = 1, we get,

1- Z B(k)[k],a; > a{l - Z B()a[B([k], — 1) + 1]].
k=2 k=2

Equivalently we have,

Z B(k)[K]ay — a[Z B [B([k], — 1) + 1]} <d-a)
k=2 k=2

which implies

Z B()a[(1— aB)[kl, + af — a] < (1 — ).
k=2
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Conversely, assume that (2.1) is be true. To show that f € T, (a, 5,9, 1), we need to prove the

inequality (1.8). For this consider

11<1—a.

{ 2Dy (87 f (2)) }_
BzD,(BYf(2)) + (1 — BB f (2)

But

{ z = ¥y BO)k]qaz" } |
-1
2= %7, Bz [B(kly — 1) +1]

Y, Bag([kl, — 1) (B — 1)z*
z— Y, B(k)ay[p([kl, — 1) + 1]z*

Yo, BUak([klg — 1)(B — 1)|z¥|
Tzl = s, B()a|B([k]y — 1) + 1]Iz¥]

Y2 Ba([klg —1)(B—1)
T 1-37, Ba[p([kl; - 1) +1]

The last expression is bounded above by 1 — « if

D Bloa([kl,~1)(8 — 1)
k=2
<1-a) (1 _ Z B(k)a[B([k], — 1) + 1])
k=2
or
Z B(k)ak[(l —ap)[k]s + ap — a] <l-ag,
k=2

which is true by hypothesis. This completes the assertion of Theorem 2.1.

Corollary 2.1. If f € T;(a, 8,9, ). then
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1—a

B()[(1—aP)[k], + aB — a]

lag| <

Theorem 2.2. Let 0 < @ < 1,0 < f; < f, < 1,, then Ty (a, $1,9, 1) € Ty(a, 2,9, 1).
Proof. For f(z) € T,(a, B5,9,4). We have,

> BUOa[(1 - aplkl, + af, - af

k=2

< z B(k)ay[(1 — aB)[k], + apy —a| <1-a.
k=2

Hence f(z) € T;(a, B1,9,4).

3 Extreme points and Closure property
Theorem 3.1. Let f € T, (a, B,9, A). Define f;(z) = z and
l1—«a

= k1, —
@) = 2 ol — ek, +ap—a]” T

for some a, (0 < f <1)and z € E. Then f € T,(a, 3,9, 1) if and only if f(z) can be

expressed as f(z) = Ypeq Uk fi(z) where py = 0 and Yo, 4y = 1.

Proof. If f(2) = X peq i fic(2) with Y- ux = 1, 1y = 0, then

[ee)

D BUO[(1 = ap)[k]q + ap — alu
& BUO[(1 - ap)[k] + aB — af

A-0)) w(-a)
k=2

=Ql-p)d-a)<sA-a.

Hence f € Ty(a, 5,9, 4).
Conversely, let f(2) = z — Y2 ,a,z" € Ty(a, B,9,2). Define

BB —aP)[Klg +ap —a]lal
= a—a k=23,
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and define y; = 1 — Y1, ty. From Theorem (2.2), ¥ x—, 4k < 1 and hence y; > 0. Since

iefi(2) = wef (2) + axz®, Tizaiefi(2) = z — T arz® = f(2).

Theorem 3.2. The class Ty, (a,B,9, 7). is closed under convex linear combination.

Proof.Let f(2), g(2) € Ty(a,B,9,4) and let

[ee)

f(z)=z—- apz®, g(2) = z — by z*.
> kz ‘

k=2

For n such that 0 < n < 1, it suffices to show that the function defined by

h(z) = (1 —n)f(2) + ng(2),z € E belongs to T, (a, B,9, ). Now

[ee)

h@) =2z = )" [(1 = n)ag +nbelz*.

k=2

Applying Theorem 2.2, to f(z), g(z) € Ty(a, B,9,1). We have

D BO[( - ap)Klq + af — a][(L — mas +nby]
k=2
= (1-n) ) BE[( - ap)[klq +af - aa

k=2

1) BAO[(L = af)[Klq + af - alb
k=2
<A-m-ao)+n1l-a)=(1-a).
This implies that h(z) € T, (a, 8,9, 1).
Corollary 3.1. If f(2), f2(2) are in Ty (e, B, 9, 1) then the function defined by
9(@) =2 [A@) + f2(2)] is also in Ty (, B, 9, 2).

Theorem 3.3. Let for j = 1,2, k, fj(2) = z — Ypepay;z° € Ty(a,8,9,4) and 0 < B; < 1
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such that 2?:1 B; = 1, then the function F(z) defined by F(z) = Z?zl B;fj(z) is also in
T,(a,B,9,2).

Proof. For each j € {1,2,3,-+, k} we obtain
z BU[(1 — ap)[k], + af — allax] < (1 — a).
k=2

F(2) =i B, <Z—§ ak,jz"> =z—§ k Biay; |z*

j=1 k=2 k=2 \j=

0 k
> B[ -ap)lkl, +ap —al [ faw,
k= j=1

©o

2
k

=Y B|D B[ - ap)lkl, +af - qf
]21 k=2

<Z B(1—a)< (1-a).

j=1

Therefore F(z) € Ty(a, B,9, 1).

Conclusion: The study has introduced and analyzed a specific subclass of analytic functions
defined by the g-analogue differential operator. The main findings include new properties and
characterizations that distinguish this subclass from those defined by classical differential
operators. These results offer valuable insights into the structure and behavior of analytic
functions within the framework of g-calculus, presenting potential applications in various fields

of mathematical and physical sciences.
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