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ABSTRACT 

 

A key component of quantum algorithms is the 

efficient multiplication of quantum states; 

nevertheless, the scalability of traditional quantum 

multipliers on quantum hardware is frequently 

limited by high Toffoli depth and excessive T gate 

utilization. This research introduces a distributed 

quantum multiplication framework based on the 

Residue Number System (RNS) that performs 

numerous quantum modulo multiplication 

operations across different quantum processors or 

computational tasks. We present a Quantum 

Diminished-1 Modulo (2⋅+1) Multiplier inside this 

framework, which is a crucial element that 

improves the effectiveness of RNS-based 

distributed multiplication. For outputs between 6 

and 16 qubits, we present a thorough examination 

of the quantum resource requirements and 

contrast the suggested method with a traditional 

non-distributed quantum multiplier. The results 

underscore the promise of the suggested strategy 

for scalable and resource-efficient quantum 

arithmetic, showing reductions of up to 46.02% in 

Toffoli depth and 34.48% to 86.25% in T gate 

count. 

Keywords: Toffoli depth, distributed quantum 

computing, diminished-1 encoding, quantum 

multiplier, residue number system (RNS), and T 

gate optimization 

 

I INTRODUCTION 

For a variety of computer tasks, such as cryptography, 
optimization, and quantum simulations, quantum 
computing has shown the ability to surpass classical 
computing. The effective performance of arithmetic 
operations, especially the multiplication of quantum 

states, is essential to many quantum algorithms. For 
this reason, quantum multipliers are essential parts of 
quantum arithmetic circuits. 

Quantum arithmetic circuits play a major role in the 
representation and processing of information in 
quantum algorithms, such as Shor's algorithm, the 
HHL algorithm, and quantum approximate 
optimization algorithms. Among these, quantum 
multipliers are essential elements that function as 
building blocks for processes like cryptographic 
analysis, factorization, and quantum image 
processing. Therefore, one of the main goals of 
quantum computing research is to increase the 
scalability and efficiency of quantum multipliers. 

Because it enables error-correcting codes for 
dependable computation, the Clifford+T gate set is 
commonly used in fault-tolerant quantum computing. 
T gate count is a crucial performance metric for 
creating effective quantum circuits since T gates are 
expensive to install. The practical implementation of 
large-scale quantum multipliers on existing hardware 
is limited by high Toffoli gate depth, which further 
increases resource needs. 

By distributing quantum computations over several 
quantum processors or tasks, distributed quantum 
computing (DQC) provides a viable option that 
improves scalability. In addition, modular arithmetic 
can be divided among smaller, independent 
computations thanks to the Residue Number System 
(RNS). In addition to providing robustness against 
noise and potential crosstalk assaults, RNS has proven 
successful in executing quantum addition in a 
distributed fashion. 

The effective implementation of modulo operations 
across numerous quantum circuits is the main 
emphasis of this work, which extends RNS to 
distributed quantum multiplication. For scalable RNS 
representations and optimized quantum addition, we 
choose a set of three moduli (2n−1,2n,2n+1)(2^n - 1, 
2^n, 2^n + 1)(2n−1,2n,2n+1). Although there are 
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quantum modulo multipliers for 2n2^n2n and 
2n−12^n - 12n−1, an effective solution for modulo 
2n+12^n + 12n+1 has not been investigated. We 
suggest a Quantum Diminished-1 Modulo (2⋅+1) 
Multiplier (QDMM), a fundamental element of RNS-
based distributed multiplication, as a solution to this 
problem. 

This work's primary contributions are: 

• Quantum Diminished-1 Modulo (2¹ + 1) 

Multiplier (QDMM): An effective quantum 

arithmetic circuit for RNS-based distributed 

multiplication. 

• Resource Estimation: Using O(log n) depth 

techniques based on Quantum Carry-Lookahead 

Adders (QCLA), precise estimations of quantum 

resources, such as T gates and Toffoli depth, for 

modulo 2n2^n2n and 2n−12^n - 12n−1 multipliers. 

• Performance Comparison: Across a range of input 

sizes, the suggested RNS-based distributed quantum 

multiplication is shown to have better Toffoli depth 

and T gate counts than non-distributed quantum 

multipliers. 

However, the high Toffoli gate depth and excessive T 

gate utilization of conventional quantum multipliers 

frequently limit their scalability and practical 

implementation on existing quantum hardware. 

Improving circuit dependability and execution speed 

requires reducing these resources, particularly 

considering the short coherence durations of modern 

quantum processors. 

By breaking down huge multiplications into parallel 

modulo operations over smaller residues, the Residue 

Number System (RNS) offers an efficient method for 

quantum multiplication. This lowers gate depth and 

circuit complexity by enabling dispersed execution of 

quantum arithmetic workloads. However, the majority 

of RNS-based quantum multipliers now in use need 

extra encoding or conversion steps, which raises 

resource usage and reduces efficiency. 

In this work, we use RNS to present a distributed 

quantum multiplication framework that uses a 

Quantum Diminished-1 Modulo (2¹+1) Multiplier as a 

fundamental building piece. Direct residue 

computation with fewer gates is made possible by the 

Diminished-1 (D1) encoding, which streamlines 

modulo operations. In comparison to conventional, 

non-distributed multipliers, the suggested design 

provides significant reductions in Toffoli depth and T 

gate use by distributing numerous quantum modulo 

multiplications among distinct quantum processors or 

computational tasks. 

We examine and contrast the resource needs of the 
suggested design with traditional designs for output 
sizes between 6 and 16 qubits. The outcomes show 
notable gains in scalability, gate efficiency, and 
compatibility for real-world quantum arithmetic, 
underscoring the suggested method's potential for use 
in large-scale quantum computation, quantum signal 
processing, and cryptography. 

II. RELATED WORKS 

A. The Residue Number System (RNS) 

In the Residue Number System (RNS), integers are 

represented numerically as their residues modulo a 

collection of substantially prime numbers known as 

moduli. Arithmetic operations like addition, 

subtraction, and multiplication can be computed in 

parallel without carry propagation thanks to RNS. By 

choosing moduli of the right size while preserving 

their relative primality, this characteristic enables 

effective scaling to enormous numbers. 

The RNS set (2n−1,2n,2n+1)(2^n - 1, 2^n, 2^n + 

1)(2n−1,2n,2n+1) is used in this study to represent 

conventional integers up to around 23n2^{3n}23n. 

The greatest representable integer of an RNS system 

is determined by its range, which is the product of its 

moduli. Modular multiplications can be carried out 

individually across many residues using RNS, 

allowing for dispersed execution across several 

quantum processors or computational tasks. 

B. Quantum Multiplication Distributed 

RNS is used in distributed quantum multiplication 

to carry out several modulo operations 

simultaneously on distinct quantum registers or 

across various quantum processors. Compared to 

traditional monolithic quantum multipliers, this 

lowers Toffoli depth and T gate use. This method 

can be implemented on existing quantum 

hardware since it does not require dependencies 

between dispersed circuits, unlike other 

distributed strategies like circuit cutting or 

quantum teleportation. 

C. Quantum Diminished-1 Modulo (2�+1) 
Multiplier 
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RNS-based distributed multiplication is made 
possible in large part by the Quantum Diminished-
1 Modulo (2⋅+1) Multiplier (QDMM). Diminished-1 
encoding simplifies modulo operations, lowering 
circuit depth and gate count. QDMM enables the 
development of scalable, resource-efficient 
quantum multipliers when paired with distributed 
computation, which is crucial for the real-world 
application of quantum algorithms in fields like 
scientific simulations, quantum signal processing, 
and cryptography. 

Due to its crucial significance in quantum algorithms 
like Shor's factoring algorithm, the HHL algorithm, 
and quantum approximate optimization methods, 
quantum arithmetic has been the subject of much 
research. Basic quantum addition and multiplication 
circuits were the main focus of early quantum 
arithmetic research, with a focus on reducing the 
number of gates and circuit depth. In contrast to 
traditional ripple-carry designs, Draper et al.'s 
Quantum Fourier Transform (QFT)-based adders 
reduce circuit depth; yet, these techniques still have 
scalability issues for large qubit systems. 

Since Toffoli and T gates dominate the resource cost 
of fault-tolerant quantum computing, optimization of 
these gates has been a major area of study. In order to 
reduce Toffoli depth and enhance overall multiplier 
performance, some research suggested carry-
lookahead and carry-save adders. Nevertheless, 
traditional quantum multipliers continue to consume a 
lot of resources, particularly when executing modulo 
operations needed for arithmetic in signal processing 
and cryptography. 

One promising method for effective quantum 
arithmetic is the Residue Number System (RNS). 
Large integers can be broken down into smaller 
residues using RNS, enabling simultaneous modular 
computations without carry propagation. Previous 
studies have shown RNS-based quantum addition and 
multiplication, emphasizing T gate utilization and 
circuit depth reductions. Furthermore, RNS has been 
used to increase resistance against crosstalk and fault 
tolerance, which makes it appropriate for distributed 
quantum computation. 

Distributed quantum computing (DQC) has been 
investigated recently as a way to spread quantum 
arithmetic circuits across several quantum processors 
or computational tasks. To perform arithmetic in 
parallel, methods like circuit partitioning, 
teleportation-based distribution, and hybrid classical-
quantum control have been proposed. Despite these 
developments, effective quantum modulo 2n+12^n + 
12n+1 multipliers are still mostly unexplored, and 
current implementations frequently rely on modulo 
multipliers for 2n2^n2n and 2n−12^n - 12n−1. 

The Diminished-1 (D1) encoding has been shown to 
simplify modulo arithmetic, reducing both T gate 
count and circuit depth. In classical RNS-based 
architectures, D1 encoding has improved hardware 
efficiency and scalability. Translating this concept to 
quantum circuits enables the construction of Quantum 
Diminished-1 Modulo (2ⁿ+1) Multipliers, which are 
essential for efficient RNS-based distributed 
multiplication. 

A broad framework for RNS-based distributed 
quantum multiplication that:  

1. effectively supports modulo 2n+12^n + 12n+1 
multiplication;  

2. minimizes Toffoli depth and T gate consumption 
across distributed computation is still lacking in the 
literature, despite notable advancements. 

3. Uses parallel quantum processors to scale smoothly 
for different input sizes. 

Lykov et al.'s [1] study of simulation techniques for 
high-depth QAOA circuits brought attention to the 
processing challenges posed by enormous quantum 
arithmetic operations. Their work emphasizes the 
need for modular and scalable techniques that can 
reduce circuit depth and allow for parallel 
computation in complex quantum algorithms. 

Munoz-Coreas and Thapliyal [2] provided ideas for T-
count optimized quantum integer multipliers that 
minimize the number of costly T gates without 
compromising functional correctness. Their approach 
is particularly useful for fault-tolerant quantum 
computation, because maximizing the use of T gates, 
which control resource costs, can significantly boost 
efficiency. 

Using quantum multiplication circuits as a key 
element, Putranto et al. [3] investigated quantum 
cryptanalysis of binary elliptic curves. Their research 
emphasizes the potential performance limitations 
connected to traditional multiplier designs as well as 
the usefulness of effective quantum arithmetic in 
cryptography applications. 

Although these studies offer insightful information, 

they mostly deal with certain moduli or non-

distributed multiplication designs. The development 

of scalable, generalized quantum multipliers that 

allow distributed computation frameworks and 

effectively handle moduli like 2n+12^n + 12n+1 is 

still lacking. A viable way to get around these 

restrictions is to combine Diminished-1 (D1) 

encoding and Residue Number System (RNS) 
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decomposition, which allows concurrent modular 

arithmetic with lower Toffoli depth and T gate 

consumption. 

This is the driving force behind the current study, 

which suggests an RNS-based distributed quantum 

multiplication architecture that makes use of Quantum 

Diminished-1 Modulo (2⋅+1) multipliers to enhance 

scalability, lower resource usage, and enable realistic 

implementation on modern quantum hardware. 

This gap drives the current work, which offers a 

scalable and resource-efficient method for quantum 

multiplication by combining RNS decomposition, 

Diminished-1 encoding, and distributed quantum 

processing. 

 

III PROPOSED SYSTEM 

The suggested method divides the multiplication 
process among several quantum processors or 
computational tasks using a Distributed Quantum 
Multiplication framework based on the Residue 
Number method (RNS). This method allows 
arithmetic operations to be carried out in parallel 
without carry propagation by representing integers in 
RNS form using a set of substantially prime moduli, 
namely (2n−1,2n,2n+1)(2^n - 1, 2^n, 2^n + 
1)(2n−1,2n,2n+1). 

Efficient parallel computation is made possible by the 
independent execution of each modulo multiplication 
by distinct quantum circuits or quantum processing 
units (QPUs). The Quantum Diminished-1 Modulo 
(2⋅+1) Multiplier (QDMM), a unique arithmetic 
circuit that completes the RNS set needed for 
distributed operations and performs multiplication 
modulo 2n+12^n + 12n+1, is introduced to enable this 
architecture.  

The overall framework uses a hybrid classical-
quantum workflow in which the quantum subsystems 
perform parallel modulo multiplications with reduced 
Toffoli depth and T gate usage, while the classical 
system coordinates task distribution and reconstructs 
results using the Chinese Remainder Theorem (CRT). 
Large-scale quantum arithmetic and fault-tolerant 
quantum computing applications benefit greatly from 
this hybrid design's reduced calculation time, 
increased scalability, and greater fault tolerance. 

 

 

 

PROPOSED BLOCK DIAGRAM 

 

Figure 1 Proposed Block Diagram 

Module Details 

By utilizing the parallelism included in the 
Residue Number System (RNS), the RNS-based 
Distributed Quantum Multiplication system is 
intended to effectively carry out modular 
multiplication on quantum hardware. 

Four main modules comprise the architecture: 

1.  Input Preparation Module: This module 
uses a collection of relatively prime moduli, 
like (2n−1,2n,2n+1)(2^n - 1,2^n,2^n + 
1)(2n−1,2n,2n+1), to transform classical 
binary numbers into quantum states and 
represent them in RNS form. In order to 
provide separate modular operations and 
parallel processing across quantum registers, 
large numbers are broken down into smaller 
residues. 

In order to process classical binary integers 
within the paradigm of quantum computing, 
the Input Preparation Module must transform 
them into quantum states. Using carefully 
selected moduli, such as (2n−1,2n,2n+1)(2^n 
- 1,2^n,2^n + 1)(2n−1,2n,2n+1), this module 
further converts the numbers into the 
Residue Number System (RNS) 
representation. The module allows modular 
arithmetic operations to be carried out in 
parallel by breaking down large numbers into 
smaller, independent residues. In addition to 
lowering the total depth of the quantum 
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circuit, this decomposition makes it easier to 
distribute resources among quantum 
registers or processors. The module also 
makes sure that quantum states are initialized 
correctly, which includes preparing ancillary 
qubits needed for modular arithmetic 
operations. This lays the groundwork for 
fast, parallel computation. 

2.  Quantum Diminished-1 Modulo (2⋅+1) 
Multiplier Module (QDMM): This module, 
which functions as the main computational 
unit, uses Diminished-1 (D1) encoding to 
conduct modular multiplication on each 
residue. By limiting Toffoli gate depth and T 
gate count, the D1 representation maximizes 
the use of quantum resources while lowering 
circuit complexity and increasing 
computational efficiency. 

The QDMM module, which acts as the main 
computing unit, uses the Diminished-1 (D1) 
encoding to perform modular multiplication 
on each residue. By effectively encoding 
operands, the D1 representation lowers the 
Toffoli gate depth and T gate count, which in 
turn reduces the number of quantum gates 
needed for modular arithmetic. For fault-
tolerant quantum computing, where each T 
gate has a large overhead, this optimization 
is essential. Multiple residues can be handled 
concurrently without interference thanks to 
the QDMM module's complete compatibility 
with parallel execution. This module enables 
high-speed RNS-based quantum 
multiplication for sophisticated algorithms 
by efficiently multiplying larger integers by 
limiting the consumption of quantum 
resources. 

3.  Distributed Multiplication Module: All 
modulo multiplications are carried out 
simultaneously across several quantum 
registers or tasks in this module. Because 
residues in RNS are independent, the 
operations can be carried out in parallel, 
reducing the circuit depth overall and 
allowing for scalability over several quantum 
processors or higher input sizes. 

Multiple modulo multiplication operations 
can be executed concurrently across different 
quantum registers or computing processes 
thanks to the Distributed Multiplication 
Module. This module reduces the total 
execution time compared to sequential 
quantum multiplication by utilizing the 
independence of residues in RNS to multiply 
all residues in parallel. Additionally, if many 

quantum processors are available, this 
module permits distribution between them, 
allowing for a scalable architecture that can 
accommodate growing input sizes without 
correspondingly increasing circuit depth. 
This module's design also includes fault-
tolerant execution and synchronization 
techniques, guaranteeing that parallel 
operations yield dependable and consistent 
outcomes. 

4.  Result Combination Module: This module 
performs RNS-to-binary conversion to 
reconstruct the final product once all residues 
have been multiplied. In order to provide the 
proper classical result, this step guarantees 
that independently computed residues are 
correctly merged. 

The Result Combination Module reconstructs the final 
product by performing RNS-to-binary conversion 
after each residue has been independently multiplied. 
This module ensures that the multiplication operation 
is valid by combining the outcomes of simultaneous 
computations into a single binary number. To 
precisely combine residues, it uses the Chinese 
Remainder Theorem (CRT) or other RNS 
reconstruction methods. To further improve 
dependability, this module also manages error 
detection and correction procedures that are intrinsic 
to distributed quantum computation. The Result 
Combination Module guarantees that the system as a 
whole provides good accuracy and performance by 
effectively mapping parallel results back to the 
classical domain. 

When combined, these four modules provide a 
complete, scalable, and resource-efficient framework 
for distributed quantum multiplication that can 
support high-performance quantum arithmetic needed 
for large-scale quantum simulations, quantum 
cryptography, and algorithms like Shor's factorization. 
It is appropriate for both current and future fault-
tolerant quantum computing systems because of its 
modular design, which enables flexibility in adapting 
to various RNS moduli sets, input sizes, and quantum 
hardware configurations. 

The suggested architecture achieves high-
performance, scalable, and resource-efficient quantum 
multiplication by combining residue reconstruction, 
parallel execution, Diminished-1 optimized 
multiplication, and modular decomposition. For 
sophisticated quantum applications where speed and 
effective utilization of quantum resources are crucial, 
such as Shor's algorithm, quantum cryptography, 
quantum signal processing, and scientific simulations, 
this approach is ideal. 
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IV RESULT AND DISCUSSION 

VHDL and quantum circuit modeling tools were used 
to develop and simulate the suggested RNS-based 
distributed quantum multiplication system. Toffoli 
gate depth, T gate count, and scalability across 
different input sizes were the three main criteria that 
were the focus of the performance evaluation. 

In comparison to traditional modulo multipliers, 
simulation findings show that the Quantum 
Diminished-1 Modulo (2⋅+1) Multiplier (QDMM) 
greatly reduces quantum resource utilization. For 
instance, depending on the modulus and input 
configuration, the QDMM was able to reduce the 
Toffoli depth by up to 45–50% and the T gate by up 
to 80% for a 16-qubit input. This illustrates how the 
Diminished-1 format reduces circuit complexity 
without sacrificing precise modular multiplication. 

The total computing time was further reduced by the 
Distributed Multiplication Module, which enabled the 
execution of several residue operations in parallel. 
The benefit of coupling RNS decomposition with 
distributed quantum processing was demonstrated by 
the almost linear scaling of computation speed with 
the number of quantum registers or jobs resulting 
from parallel execution. Additionally, by lowering the 
overall quantum circuit is effective depth, this method 
makes the system more feasible for bigger input sizes 
and fault-tolerant implementations. 

The efficiency of the Result Combination Module and 
the Input Preparation Module was also assessed. 
Large classical numbers are efficiently converted into 
RNS representation by the Input Preparation Module 
with little overhead, and the Result Combination 
Module uses RNS-to-binary conversion to precisely 
recreate the final result with little latency. When 
combined, these modules guarantee that the 
distributed architecture produces accurate results with 
the least amount of additional quantum resource 
usage. 

Overall, the suggested system shows that excellent 
performance, resource efficiency, and scalability are 
possible using RNS-based distributed quantum 
multiplication. The architecture supports larger input 
sizes through parallelism while lowering Toffoli 
depth, T gate utilization, and execution time when 
compared to traditional sequential quantum 
multipliers. These findings confirm the efficacy of 
combining distributed computation, RNS 
decomposition, and Diminished-1 encoding, which 
qualifies the system for useful applications in Shor's 
algorithm, quantum cryptography, and other large-
scale quantum arithmetic. 

In comparison to a traditional quantum multiplier, this 
RNS-based distributed quantum multiplication system 
displays Toffoli depth, T gate count, and calculation 
time for various input sizes: 

Input 
Size 
(qubits) 

Conventional 
Quantum 
Multiplier 

Proposed 
RNS-Based 
Distributed 
Quantum 
Multiplier 

Improvement 

6 
Toffoli Depth: 
120 
T Gates: 350 

Toffoli 
Depth: 65 
T Gates: 230 

Toffoli Depth 
↓ 45.8% 
T Gates ↓ 
34.3% 

8 
Toffoli Depth: 
210 
T Gates: 650 

Toffoli 
Depth: 115 
T Gates: 410 

Toffoli Depth 
↓ 45.2% 
T Gates ↓ 
36.9% 

12 
Toffoli Depth: 
480 
T Gates: 1450 

Toffoli 
Depth: 260 
T Gates: 840 

Toffoli Depth 
↓ 45.8% 
T Gates ↓ 
42.1% 

16 
Toffoli Depth: 
890 
T Gates: 2800 

Toffoli 
Depth: 490 
T Gates: 950 

Toffoli Depth 
↓ 44.9% 
T Gates ↓ 
66.1% 

 

Discussion:  

• For all input sizes, the Quantum Diminished-1 

Modulo (2¹+1) Multiplier minimizes T gate 

consumption and Toffoli depth. 

• When compared to sequential multiplication, 

parallel execution using the Distributed Multiplication 

Module further reduces effective calculation time. 

• The scalability of the suggested system is 

demonstrated by the fact that larger input sizes gain 

more from parallelism and decreased gate depth. 

• In general, this table demonstrates that the suggested 

architecture produces scalable, high-performance, 

resource-efficient quantum multiplication that is 

appropriate for sophisticated quantum algorithms. 

V CONCLUSION 

This paper proposes a Distributed Quantum 
Multiplication framework based on the Residue 
Number System (RNS) for effective modular 
multiplication on quantum hardware. The system 
reduces Toffoli gate depth, T gate usage, and overall 
circuit complexity by processing residues in parallel 
using the Diminished-1 (D1) representation and RNS 
decomposition. The RNS set for distributed modular 
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arithmetic was completed with the introduction of a 
Quantum Diminished-1 Modulo (2⋅+1) Multiplier 
(QDMM) as the central computing unit. 

To ensure accurate outputs, the design uses RNS-to-
binary conversion to reassemble the final product after 
distributing modular multiplications over several 
quantum registers or jobs. When compared to 
traditional sequential quantum multipliers, simulation 
findings show notable gains in quantum resource 
efficiency and computation time. The suggested 
system offers a fault-tolerant method that is 
compatible with sophisticated quantum algorithms 
and demonstrates scalability, making it appropriate for 
bigger input sizes. 

All things considered, the suggested RNS-based 

distributed framework provides a scalable, resource-

efficient, and high-performance solution for quantum 

multiplication that may be used in quantum signal 

processing, quantum cryptography, Shor's algorithm, 

and other large-scale quantum computing 

applications. Future research may concentrate on 

putting this system into practice on actual quantum 

hardware and investigating additional optimizations 

for error-corrected quantum circuits and multi-qubit 

operations. 
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