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ABSTRACT

A key component of quantum algorithms is the
efficient multiplication of quantum states;
nevertheless, the scalability of traditional quantum
multipliers on quantum hardware is frequently
limited by high Toffoli depth and excessive T gate
utilization. This research introduces a distributed
quantum multiplication framework based on the
Residue Number System (RNS) that performs
numerous quantum modulo multiplication
operations across different quantum processors or
computational tasks. We present a Quantum
Diminished-1 Modulo (2-+1) Multiplier inside this
framework, which is a crucial element that
improves the effectiveness of RNS-based
distributed multiplication. For outputs between 6
and 16 qubits, we present a thorough examination
of the quantum resource requirements and
contrast the suggested method with a traditional
non-distributed quantum multiplier. The results
underscore the promise of the suggested strategy
for scalable and resource-efficient quantum
arithmetic, showing reductions of up to 46.02% in
Toffoli depth and 34.48% to 86.25% in T gate
count.

Keywords: Toffoli depth, distributed quantum
computing, diminished-1 encoding, quantum
multiplier, residue number system (RNS), and T
gate optimization

I INTRODUCTION

For a variety of computer tasks, such as cryptography,
optimization, and quantum simulations, quantum
computing has shown the ability to surpass classical
computing. The effective performance of arithmetic
operations, especially the multiplication of quantum
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states, is essential to many quantum algorithms. For
this reason, quantum multipliers are essential parts of
quantum arithmetic circuits.

Quantum arithmetic circuits play a major role in the
representation and processing of information in
quantum algorithms, such as Shor's algorithm, the
HHL  algorithm, and quantum approximate
optimization algorithms. Among these, quantum
multipliers are essential elements that function as
building blocks for processes like cryptographic
analysis, factorization, and quantum image
processing. Therefore, one of the main goals of
quantum computing research is to increase the
scalability and efficiency of quantum multipliers.

Because it enables error-correcting codes for
dependable computation, the Clifford+T gate set is
commonly used in fault-tolerant quantum computing.
T gate count is a crucial performance metric for
creating effective quantum circuits since T gates are
expensive to install. The practical implementation of
large-scale quantum multipliers on existing hardware
is limited by high Toffoli gate depth, which further
increases resource needs.

By distributing quantum computations over several
quantum processors or tasks, distributed quantum
computing (DQC) provides a viable option that
improves scalability. In addition, modular arithmetic
can be divided among smaller, independent
computations thanks to the Residue Number System
(RNS). In addition to providing robustness against
noise and potential crosstalk assaults, RNS has proven
successful in executing quantum addition in a
distributed fashion.

The effective implementation of modulo operations
across numerous quantum circuits is the main
emphasis of this work, which extends RNS to
distributed quantum multiplication. For scalable RNS
representations and optimized quantum addition, we
choose a set of three moduli (2n—1,2n,2n+1)(2"n - 1,
2”n, 2”n + 1)(2n—1,2n,2n+1). Although there are
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quantum modulo multipliers for 2n2”n2n and
2n—12”n - 12n—1, an effective solution for modulo
2n+12”n + 12n+1 has not been investigated. We
suggest a Quantum Diminished-1 Modulo (2-+1)
Multiplier (QDMM), a fundamental element of RNS-
based distributed multiplication, as a solution to this
problem.

This work's primary contributions are:

* Quantum Diminished-1 Modulo (' + 1)
Multiplier (QDMM): An effective quantum
arithmetic  circuit for RNS-based distributed
multiplication.

* Resource Estimation: Using O(log n) depth
techniques based on Quantum Carry-Lookahead
Adders (QCLA), precise estimations of quantum
resources, such as T gates and Toffoli depth, for
modulo 2n2”n2n and 2n—12"n - 12n—1 multipliers.

* Performance Comparison: Across a range of input
sizes, the suggested RNS-based distributed quantum
multiplication is shown to have better Toffoli depth
and T gate counts than non-distributed quantum
multipliers.

However, the high Toffoli gate depth and excessive T
gate utilization of conventional quantum multipliers
frequently their scalability and practical
implementation on existing quantum hardware.
Improving circuit dependability and execution speed
requires reducing these resources, particularly
considering the short coherence durations of modern
quantum processors.

limit

By breaking down huge multiplications into parallel
modulo operations over smaller residues, the Residue
Number System (RNS) offers an efficient method for
quantum multiplication. This lowers gate depth and
circuit complexity by enabling dispersed execution of
quantum arithmetic workloads. However, the majority
of RNS-based quantum multipliers now in use need
extra encoding or conversion steps, which raises
resource usage and reduces efficiency.

In this work, we use RNS to present a distributed
quantum multiplication framework that uses a
Quantum Diminished-1 Modulo (2!+1) Multiplier as a
fundamental  building piece. Direct residue
computation with fewer gates is made possible by the
Diminished-1 (D1) encoding, which streamlines
modulo operations. In comparison to conventional,
non-distributed multipliers, the suggested design
provides significant reductions in Toffoli depth and T

gate use by distributing numerous quantum modulo
multiplications among distinct quantum processors or
computational tasks.

We examine and contrast the resource needs of the
suggested design with traditional designs for output
sizes between 6 and 16 qubits. The outcomes show
notable gains in scalability, gate efficiency, and
compatibility for real-world quantum arithmetic,
underscoring the suggested method's potential for use
in large-scale quantum computation, quantum signal
processing, and cryptography.

II. RELATED WORKS
A. The Residue Number System (RNS)

In the Residue Number System (RNS), integers are
represented numerically as their residues modulo a
collection of substantially prime numbers known as
moduli.  Arithmetic  operations like addition,
subtraction, and multiplication can be computed in
parallel without carry propagation thanks to RNS. By
choosing moduli of the right size while preserving
their relative primality, this characteristic enables
effective scaling to enormous numbers.

The RNS set (2n—1,2n,2n+1)(2"n - 1, 2*n, 2”n +
1)(2n—1,2n,2n+1) is used in this study to represent
conventional integers up to around 23n2"{3n}23n.
The greatest representable integer of an RNS system
is determined by its range, which is the product of its
moduli. Modular multiplications can be carried out
many residues using RNS,
allowing for dispersed execution across several
quantum processors or computational tasks.

individually across

B. Quantum Multiplication Distributed

RNS is used in distributed quantum multiplication
to carry operations
simultaneously on distinct quantum registers or

out several modulo
across various quantum processors. Compared to
traditional monolithic quantum multipliers, this
lowers Toffoli depth and T gate use. This method
can be implemented on existing quantum
hardware since it does not require dependencies
between dispersed circuits,
distributed strategies like circuit cutting or

quantum teleportation.

unlike  other

C. Quantum Diminished-1 Modulo (2@+1)
Multiplier

PAGE NO: 141



Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 36 ISSUE 1 2026

RNS-based distributed multiplication is made
possible in large part by the Quantum Diminished-
1 Modulo (2-+1) Multiplier (QDMM). Diminished-1
encoding simplifies modulo operations, lowering
circuit depth and gate count. QDMM enables the
development of scalable, resource-efficient
quantum multipliers when paired with distributed
computation, which is crucial for the real-world
application of quantum algorithms in fields like
scientific simulations, quantum signal processing,
and cryptography.

Due to its crucial significance in quantum algorithms
like Shor's factoring algorithm, the HHL algorithm,
and quantum approximate optimization methods,
quantum arithmetic has been the subject of much
research. Basic quantum addition and multiplication
circuits were the main focus of early quantum
arithmetic research, with a focus on reducing the
number of gates and circuit depth. In contrast to
traditional ripple-carry designs, Draper et al.'s
Quantum Fourier Transform (QFT)-based adders
reduce circuit depth; yet, these techniques still have
scalability issues for large qubit systems.

Since Toffoli and T gates dominate the resource cost
of fault-tolerant quantum computing, optimization of
these gates has been a major area of study. In order to
reduce Toffoli depth and enhance overall multiplier
performance, some research suggested carry-
lookahead and carry-save adders. Nevertheless,
traditional quantum multipliers continue to consume a
lot of resources, particularly when executing modulo
operations needed for arithmetic in signal processing
and cryptography.

One promising method for effective quantum
arithmetic is the Residue Number System (RNS).
Large integers can be broken down into smaller
residues using RNS, enabling simultaneous modular
computations without carry propagation. Previous
studies have shown RNS-based quantum addition and
multiplication, emphasizing T gate utilization and
circuit depth reductions. Furthermore, RNS has been
used to increase resistance against crosstalk and fault
tolerance, which makes it appropriate for distributed
quantum computation.

Distributed quantum computing (DQC) has been
investigated recently as a way to spread quantum
arithmetic circuits across several quantum processors
or computational tasks. To perform arithmetic in
parallel, methods like circuit partitioning,
teleportation-based distribution, and hybrid classical-
quantum control have been proposed. Despite these
developments, effective quantum modulo 2n+12*n +
12n+1 multipliers are still mostly unexplored, and
current implementations frequently rely on modulo
multipliers for 2n2”n2n and 2n—12"n - 12n—1.

The Diminished-1 (D1) encoding has been shown to
simplify modulo arithmetic, reducing both T gate
count and circuit depth. In classical RNS-based
architectures, D1 encoding has improved hardware
efficiency and scalability. Translating this concept to
quantum circuits enables the construction of Quantum
Diminished-1 Modulo (2°+1) Multipliers, which are
essential for efficient RNS-based distributed
multiplication.

A broad framework for RNS-based distributed
quantum multiplication that:

1. effectively supports modulo 2n+12”n + 12n+1
multiplication;

2. minimizes Toffoli depth and T gate consumption
across distributed computation is still lacking in the
literature, despite notable advancements.

3. Uses parallel quantum processors to scale smoothly
for different input sizes.

Lykov et al.'s [1] study of simulation techniques for
high-depth QAOA circuits brought attention to the
processing challenges posed by enormous quantum
arithmetic operations. Their work emphasizes the
need for modular and scalable techniques that can
reduce circuit depth and allow for parallel
computation in complex quantum algorithms.

Munoz-Coreas and Thapliyal [2] provided ideas for T-
count optimized quantum integer multipliers that
minimize the number of costly T gates without
compromising functional correctness. Their approach
is particularly useful for fault-tolerant quantum
computation, because maximizing the use of T gates,
which control resource costs, can significantly boost
efficiency.

Using quantum multiplication circuits as a key
element, Putranto et al. [3] investigated quantum
cryptanalysis of binary elliptic curves. Their research
emphasizes the potential performance limitations
connected to traditional multiplier designs as well as
the usefulness of effective quantum arithmetic in
cryptography applications.

Although these studies offer insightful information,
they mostly deal with certain moduli or non-
distributed multiplication designs. The development
of scalable, generalized quantum multipliers that
allow distributed computation frameworks and
effectively handle moduli like 2n+12*n + 12n+1 is
still lacking. A viable way to get around these
restrictions is to combine Diminished-1 (D1)
encoding and Residue Number System (RNS)
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decomposition, which allows concurrent modular
arithmetic with lower Toffoli depth and T gate
consumption.

This is the driving force behind the current study,
which suggests an RNS-based distributed quantum
multiplication architecture that makes use of Quantum
Diminished-1 Modulo (2-+1) multipliers to enhance
scalability, lower resource usage, and enable realistic
implementation on modern quantum hardware.

This gap drives the current work, which offers a
scalable and resource-efficient method for quantum
multiplication by combining RNS decomposition,
Diminished-1 encoding, and distributed quantum
processing.

IIT PROPOSED SYSTEM

The suggested method divides the multiplication
process among several quantum processors oOr
computational tasks using a Distributed Quantum
Multiplication framework based on the Residue
Number method (RNS). This method allows
arithmetic operations to be carried out in parallel
without carry propagation by representing integers in
RNS form using a set of substantially prime moduli,
namely (2n—1,2n,2n+1)(2"n - 1, 2”n, 2*n +
1)(2n—1,2n,2n+1).

Efficient parallel computation is made possible by the
independent execution of each modulo multiplication
by distinct quantum circuits or quantum processing
units (QPUs). The Quantum Diminished-1 Modulo
(2-+1) Multiplier (QDMM), a unique arithmetic
circuit that completes the RNS set needed for
distributed operations and performs multiplication
modulo 2n+12”n + 12n+1, is introduced to enable this
architecture.

The overall framework uses a hybrid classical-
quantum workflow in which the quantum subsystems
perform parallel modulo multiplications with reduced
Toffoli depth and T gate usage, while the classical
system coordinates task distribution and reconstructs
results using the Chinese Remainder Theorem (CRT).
Large-scale quantum arithmetic and fault-tolerant
quantum computing applications benefit greatly from
this hybrid design's reduced calculation time,
increased scalability, and greater fault tolerance.

PROPOSED BLOCK DIAGRAM
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Power Output
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Figure 1 Proposed Block Diagram

Module Details

By utilizing the parallelism included in the
Residue Number System (RNS), the RNS-based
Distributed Quantum Multiplication system is
intended to effectively carry out modular
multiplication on quantum hardware.

Four main modules comprise the architecture:

1. Input Preparation Module: This module
uses a collection of relatively prime moduli,
like (2n—1,2n2n+1)2"n - 1,2"n,2"n +
1)(2n—1,2n,2n+1), to transform classical
binary numbers into quantum states and
represent them in RNS form. In order to
provide separate modular operations and
parallel processing across quantum registers,
large numbers are broken down into smaller
residues.

In order to process classical binary integers
within the paradigm of quantum computing,
the Input Preparation Module must transform
them into quantum states. Using carefully
selected moduli, such as (2n—1,2n,2n+1)(2"n
- 1,2”n,2"n + 1)(2n—1,2n,2n+1), this module
further converts the numbers into the
Residue Number System (RNS)
representation. The module allows modular
arithmetic operations to be carried out in
parallel by breaking down large numbers into
smaller, independent residues. In addition to
lowering the total depth of the quantum
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circuit, this decomposition makes it easier to
distribute resources among quantum
registers or processors. The module also
makes sure that quantum states are initialized
correctly, which includes preparing ancillary
qubits needed for modular arithmetic
operations. This lays the groundwork for
fast, parallel computation.

Quantum Diminished-1 Modulo (2-+1)
Multiplier Module (QDMM): This module,
which functions as the main computational
unit, uses Diminished-1 (D1) encoding to
conduct modular multiplication on each
residue. By limiting Toffoli gate depth and T
gate count, the DI representation maximizes
the use of quantum resources while lowering
circuit complexity and increasing
computational efficiency.

The QDMM module, which acts as the main
computing unit, uses the Diminished-1 (D1)
encoding to perform modular multiplication
on each residue. By effectively encoding
operands, the D1 representation lowers the
Toffoli gate depth and T gate count, which in
turn reduces the number of quantum gates
needed for modular arithmetic. For fault-
tolerant quantum computing, where each T
gate has a large overhead, this optimization
is essential. Multiple residues can be handled
concurrently without interference thanks to
the QDMM module's complete compatibility
with parallel execution. This module enables
high-speed RNS-based quantum
multiplication for sophisticated algorithms
by efficiently multiplying larger integers by
limiting the consumption of quantum
resources.

Distributed Multiplication Module: All
modulo multiplications are carried out
simultaneously across several quantum
registers or tasks in this module. Because
residues in RNS are independent, the
operations can be carried out in parallel,
reducing the circuit depth overall and
allowing for scalability over several quantum
processors or higher input sizes.

Multiple modulo multiplication operations
can be executed concurrently across different
quantum registers or computing processes
thanks to the Distributed Multiplication
Module. This module reduces the total
execution time compared to sequential
quantum multiplication by utilizing the
independence of residues in RNS to multiply
all residues in parallel. Additionally, if many

quantum processors are available, this
module permits distribution between them,
allowing for a scalable architecture that can
accommodate growing input sizes without
correspondingly increasing circuit depth.
This module's design also includes fault-
tolerant execution and synchronization
techniques, guaranteeing that parallel
operations yield dependable and consistent
outcomes.

4. Result Combination Module: This module
performs RNS-to-binary conversion to
reconstruct the final product once all residues
have been multiplied. In order to provide the
proper classical result, this step guarantees
that independently computed residues are
correctly merged.

The Result Combination Module reconstructs the final
product by performing RNS-to-binary conversion
after each residue has been independently multiplied.
This module ensures that the multiplication operation
is valid by combining the outcomes of simultaneous
computations into a single binary number. To
precisely combine residues, it uses the Chinese

Remainder Theorem (CRT) or other RNS
reconstruction methods. To  further improve
dependability, this module also manages error

detection and correction procedures that are intrinsic
to distributed quantum computation. The Result
Combination Module guarantees that the system as a
whole provides good accuracy and performance by
effectively mapping parallel results back to the
classical domain.

When combined, these four modules provide a
complete, scalable, and resource-efficient framework
for distributed quantum multiplication that can
support high-performance quantum arithmetic needed
for large-scale quantum simulations, quantum
cryptography, and algorithms like Shor's factorization.
It is appropriate for both current and future fault-
tolerant quantum computing systems because of its
modular design, which enables flexibility in adapting
to various RNS moduli sets, input sizes, and quantum
hardware configurations.

The suggested architecture achieves  high-
performance, scalable, and resource-efficient quantum
multiplication by combining residue reconstruction,
parallel execution, Diminished-1 optimized
multiplication, and modular decomposition. For
sophisticated quantum applications where speed and
effective utilization of quantum resources are crucial,
such as Shor's algorithm, quantum cryptography,
quantum signal processing, and scientific simulations,
this approach is ideal.
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IV RESULT AND DISCUSSION

VHDL and quantum circuit modeling tools were used
to develop and simulate the suggested RNS-based
distributed quantum multiplication system. Toffoli
gate depth, T gate count, and scalability across
different input sizes were the three main criteria that
were the focus of the performance evaluation.

In comparison to traditional modulo multipliers,
simulation findings show that the Quantum
Diminished-1 Modulo (2-+1) Multiplier (QDMM)
greatly reduces quantum resource utilization. For
instance, depending on the modulus and input
configuration, the QDMM was able to reduce the
Toffoli depth by up to 45-50% and the T gate by up
to 80% for a 16-qubit input. This illustrates how the
Diminished-1 format reduces circuit complexity
without sacrificing precise modular multiplication.

The total computing time was further reduced by the
Distributed Multiplication Module, which enabled the
execution of several residue operations in parallel.
The benefit of coupling RNS decomposition with
distributed quantum processing was demonstrated by
the almost linear scaling of computation speed with
the number of quantum registers or jobs resulting
from parallel execution. Additionally, by lowering the
overall quantum circuit is effective depth, this method
makes the system more feasible for bigger input sizes
and fault-tolerant implementations.

The efficiency of the Result Combination Module and
the Input Preparation Module was also assessed.
Large classical numbers are efficiently converted into
RNS representation by the Input Preparation Module
with little overhead, and the Result Combination
Module uses RNS-to-binary conversion to precisely
recreate the final result with little latency. When
combined, these modules guarantee that the
distributed architecture produces accurate results with
the least amount of additional quantum resource
usage.

Overall, the suggested system shows that excellent
performance, resource efficiency, and scalability are
possible using RNS-based distributed quantum
multiplication. The architecture supports larger input
sizes through parallelism while lowering Toffoli
depth, T gate utilization, and execution time when
compared to traditional sequential quantum
multipliers. These findings confirm the efficacy of
combining distributed computation, RNS
decomposition, and Diminished-1 encoding, which
qualifies the system for useful applications in Shor's
algorithm, quantum cryptography, and other large-
scale quantum arithmetic.

In comparison to a traditional quantum multiplier, this
RNS-based distributed quantum multiplication system
displays Toffoli depth, T gate count, and calculation
time for various input sizes:

Proposed
Input Conventional RNS-Based
Size Quantum Distributed Improvement
(qubits) Multiplier Quantum

Multiplier

Toffoli Depth: Toffoli Toffoli Depth

o,

6 120 Depth: 65 % Gat::'g/f

T Gates: 350 T Gates: 230 34.3%

Toffoli Depth: Toffoli | M1 Db
8 210 Depth: 115 % Gates. f

T Gates: 650 T Gates: 410 36.9%

Toffoli Depth: Toffoli | M1 Db
12 480 Depth: 260 % Gates. f

T Gates: 1450 T Gates: 840 42.1%

Toffoli Depth: Toffoli IOfth o
16 890 Depth: 4901 " l’

T Gates: 2800 T Gates: 950 66.1%

Discussion:

e For all input sizes, the Quantum Diminished-1
Modulo (2'+1) Multiplier T gate
consumption and Toffoli depth.

minimizes

* When compared to sequential multiplication,
parallel execution using the Distributed Multiplication
Module further reduces effective calculation time.

* The scalability of the suggested system is
demonstrated by the fact that larger input sizes gain
more from parallelism and decreased gate depth.

* In general, this table demonstrates that the suggested
architecture produces scalable, high-performance,
resource-efficient quantum multiplication that is
appropriate for sophisticated quantum algorithms.

V CONCLUSION

This paper proposes a Distributed Quantum
Multiplication framework based on the Residue
Number System (RNS) for effective modular
multiplication on quantum hardware. The system
reduces Toffoli gate depth, T gate usage, and overall
circuit complexity by processing residues in parallel
using the Diminished-1 (D1) representation and RNS
decomposition. The RNS set for distributed modular
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arithmetic was completed with the introduction of a
Quantum Diminished-1 Modulo (2-+1) Multiplier
(QDMM) as the central computing unit.

To ensure accurate outputs, the design uses RNS-to-
binary conversion to reassemble the final product after
distributing modular multiplications over several
quantum registers or jobs. When compared to
traditional sequential quantum multipliers, simulation
findings show notable gains in quantum resource
efficiency and computation time. The suggested
system offers a fault-tolerant method that is
compatible with sophisticated quantum algorithms
and demonstrates scalability, making it appropriate for
bigger input sizes.

All things considered, the suggested RNS-based
distributed framework provides a scalable, resource-
efficient, and high-performance solution for quantum
multiplication that may be used in quantum signal
processing, quantum cryptography, Shor's algorithm,
and other large-scale  quantum  computing
applications. Future research may concentrate on
putting this system into practice on actual quantum
hardware and investigating additional optimizations
for error-corrected quantum circuits and multi-qubit
operations.
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