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Abstract—— Timeseries analysis has been a popular bundle 

of techniques for analysis and prediction of a parameter that 
evolves over time. Simple to complex models have been 
considered for huge number of real-world applications. The 
challenges in this analysis are the timeseries attributes such as 
nonstationarity, seasonality, cyclic nature and trend. Several 
software tools were developed to carry out timeseries analysis. 
Several statistical tests were proposed to validate the identified 
model. The fitted model on real time data has no ground truth 
available for true validation except for statistical statements 
based on some Hypothesis. This prompts for an analysis 
applied on simulated timeseries data with known 
characteristics. Despite the abundant literature available on 
the analysis and prediction of timeseries, the information is 
widely scattered and needs a comprehensive review of the 
same. This paper derives an explicit expression for simulating 
a nonstationary seasonal timeseries. Using this expression the 
data is simulated using various timeseries models using open-
source python language. The performance of models is 
evaluated using statistical tests. Thus, this review is not just a 
theoretical one but also includes independent simulation 
experiments. Moreover, except for few statistical tests, the 
python code is highly customized and developed from 
fundamentals without much built-in packages, leading to more 
authentic review of the topic through lot of transparency in the 
code functionality. 

Keywords— nonstationarity tests, integrated order, 
seasonality, SARMA, SARIMA, timeseries models, python 
programming. 

I. INTRODUCTION 

A time series is the time evolution of a parameter under 
observation. Examples include stock market prices, product 
sales [1], web traffic [2,3], electrocardiogram, 
electroencephalogram [4], weather profiles and many others. 
With the advent of new systems and advances in the existing 
systems such as cognitive radio, distributed sensors, internet 
of things (IOT) applications, unmanned vehicles, and 
electronic warfare, the amount of time series data is 
exploding in recent times. Speech is a natural timeseries and 
time evolution of phonetic-acoustics events play an 
important role in speech-based applications [5, 6]. In 
phonetic-acoustic analysis time evolution of short-time 
Fourier spectrum was also studied [7, 8]. In view of a data 
scientist or machine learning engineer, the time series is 
considered as an unstructured data.  A timeseries is said to 
be nonstationary if its statistics vary over time. A timeseries 
is said to be seasonal if the data has a repetitive component 
with a specific period. If the period is not the same, then the 
series is said to be cyclic.  Nonseasonal stationary timeseries 
modelling is a bit straightforward compared to nonstationary 

and seasonal series. [9]. In majority cases, exact seasonal 
period is not known. Several tests have been devised for testing 
the nonstationarity of the time series [10].  

 
A seasonal nonstationary time series model is denoted as 

 and is mathematically given by  

           (1) 

where,  
 is the time series,   

 is the gaussian white innovation process   
 is the degree of nonseasonal AR polynomial 
 is the degree of nonseasonal MA polynomial 
 is the nonseasonal integrated order  
 is the degree of seasonal AR polynomial 
 is the degree of seasonal MA polynomial 
 is the seasonal integrated order 

 is the backshift operator;  and 
so on. 

 is nonseasonal AR 
polynomial 

 is nonseasonal MA 
polynomial 

 is seasonal 
AR polynomial 

 is seasonal 
MA polynomial 
 
Several tools and programming languages are available to 
model the real world complex timeseries data. The 
validation of these models is based on statistical tests in the 
absence of ground truth. Thus, for educative purposes or for 
validating a new algorithm, simulated data is more useful.  
 

The purpose of this study is to review the nonstationary 
seasonal timeseries models in terms of generation and 
prediction. Here timeseries data with different model 
parameters p, d, q, P, D, Q is generated, and processing is 
carried out on the simulated data, review of timeseries 
models is carried out using illustrations of results.  

 
The rest of the paper is organized as follows. Section II 

presents the recent developments in the time series analysis. 
In Section III a generic recursive expression for simulating 
seasonal and nonstationary timeseries is derived from 
fundamentals. The proposed algorithms for reviewing the 
nonstationary seasonal timeseries and the details of the 
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simulated dataset are also discussed in this section.  Section 
IV discussed the analysis results with the help of 
illustrations, screenshots, tables and graphs.  Finally, the 
conclusions are drawn, and future scope of work is 
presented in section V. 

II. LITERATUTRE REVIEW 

 
In [11] linear ARIMA and Holt’s model were 

studied among other non-linear methods like neural network 
auto-regressive model. The system was aimed at arriving the 
best model to predict the risk of deaths and infections. The 
second task is the implementation of the third wave of 
infections and deaths in Russia.  The study prompted about 
the limitations of study during time-changing conditions, 
and state that time-series forecasting can be accurate only in 
the short term and suggests for nonlinear timeseries models. 
In [12]   a study was done to model the monthly foot and 
mouth disease outbreaks in Thailand using fitting timeseries 
models especially SARIMA model. The results have shown 
the importance of seasonality in timeseries modelling. 
However, estimation of seasonal period is still a challenge 
and in general grid search is used. In [13] an ARMA (1,1) 
model and an ARIMA (1, d, 1) were fitted to annual mean 
temperature data of land and sea surface. The authors have 
analyzed the ACF, PACF, residual and residual Q-Q plots.  
The study states that ARMA (1,1) fits better than ARIMA 
(1,1,1) and ARIMA (1,2,0). It prompts the importance of 
selecting model order, which in turn prompts for the 
stationarity tests before carrying out any timeseries analysis. 
 

In [14] an explorative study was performed on malaria 
data of Adamawa Region, Cameroon from 2018 to 2022. 
Statistical analysis includes rank statistics like median and 
quartiles. Dispersion analysis and shape analysis was based 
on third and fourth statistical moments i.e., Skewness and 
Kurtosis. The ACF and PACF were also explored. The 
study also used the ADF and KPSS tests for verifying the 
stationarity of data. In [15] the study aimed at analysing the 
data of skilled and certified construction workers data in the 
period 2013-2020 of Indonesia. The relationship between 
construction workers counts and absorption in construction 
industry was studied.  The projection modelling was carried 
out using ARIMA. Forecasting of number skilled 
construction workers for years 2022-2025 for all island 
provinces of Indonesia are provided. In [16] the study 
discusses univariate and vector ARMA models and dynamic 
linear models in epilepsy research. Examples are provided 
using ambulatory electrocorticography data. in the R 
programming environment.  The review study of [17] 
broadly includes linear and nonlinear timeseries methods in 
theory. Some analytical expressions for ARMA and 
GARCH models were presented. However, no simulations 
or experiments on real data were conducted to support the 
theory.  

In a very recent paper [18], energy trade analysis of 
different countries was conducted by using ARIMA models 
and LSTM models. The analysis was done on the data from 
2000 to 2020.  Primary energy consumption per capita was 
forecasted for India, Germany and China. It was stated that 
the analysis works well for some countries and for some 
other countries, the results are not encouraging.  It means 

the insights into the timeseries models are required to 
understand complex patterns especially seasonality and 
nonstationarity.  

 
In another recent work [19], life expectancy of India, 

USA and China was conducted by using ARMA and 
ARIMA models.  The analysis was based on the data from 
2000 to 2015.  Predictions were carried out for the years 
2016-2025 for different countries and results were presented 
for India, USA and China. When ARMA model was fitted 
all forecasts showed downward trend after 2015.  When 
ARMA after differencing the timeseries once or twice, the 
results have improved. However, seasonality was not 
considered in this study.  Hence, the results were not 
encouraging for the countries where there are cyclic and 
seasonal changes. Hence this phone is not included in the 
ensemble studies. 

 
In another very recent paper [20], a study was carried 

out on global health expenditures versus gross domestic 
product for almost 200 countries in 2000 and 2022.  
Forecasting health expenditure was carried out using AR, 
MA and ARMA models and using Long Short-Term 
Memory networks. Error measures such as Mean Absolute 
Error, Mean Squared Error and RMSE were used to estimate 
the model performance.  Error plots were presented for 
different (p, q) values of ARMA model. The error plots 
were cyclic indicating a cyclic component that is left 
uncaptured by the model. The results of fitting LSTM 
methods were also presented. The LSTM model could 
capture the long-term trend and thus missing the local 
temporal variations.  In fact, the Current Health Expenditure 
as a percentage curve is cyclic in nature with an upward 
trend. 

In the present review study, the nonstationary seasonal 
timeseries models are explored. The unique feature of this 
review is that independent simulations are also carried out 
along with the theory. An explicit expression for simulating 
a generic nonstationary seasonal timeseries is derived from 
fundamentals. This expression is used to simulate the 
timeseries data of different model orders (p, d, q, P, D, Q) 
and model parameters: AR, MA, SAR, SMA using open-
source python language. This avoided the problems 
associated with built-in methods such as version mismatch, 
deprecated methods, deprecated options, and so on, faced by 
the author several occasions of simulations.  Moreover, 
except for few statistical tests, the python code is highly 
customized without using any python timeseries packages. 
This makes the review more authentic as there is a lot of 
transparency in the code functionality.  

III. METHODOLOGY 

In this section, a generic expression for simulating a 
nonstationary and seasonal time series is derived. We start 
with differencing the time series represented by the model in 
(1) d times and D times seasonally, we get a seasonal 
stationary series that is denoted as   
and is mathematically given by 

                   (2) 
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The ARMA model in (2) can also be stated by a recursive 
equation as  

        
 

 
)           (3) 

 
Using the eq (3), we can generate an ARMA stationary 

timeseries samples. Now we derive a similar recursive 
expression for generating samples from an ARIMA 
nonstationary timeseries. By changing the subscript in eq 
(3), we get  

 
 

 
) 

(4) 
Subtracting eq (4) from (3), we get 

 
 

 

 
 

 

 
) 

(5) 
Defining the new variables  

 
 

(6) 
and substituting in eq (5) results in    
 

 

 

 
) 

(7) 
 

 

 
 

 

 
) 

(8) 
Again defining the new variables 

 
                                    (9) 

rearranging the terms and continuing in the same manner, 
and substituting back from eq (9) and (6), we have the 
compact expression in terms of original variable as  
 

 

 

                                 (10) 
 
where   is differentiating polynomial 
of order  with coefficients (1, -2, 1) derived from 

 row of pascal triangle. It may be noted that this 
corresponds to the polynomial  for  and 
seasonal terms correspond to  for . Here it is 
assumed that , however it will be true for the 
case of  also. Continuing further to find  differences, 
and substituting for difference samples of original series, we 
can show that the stationary ARMA series using d-
difference series, is equivalent to the original nonstationary 
ARIMA series, and we have a recursive equation to generate 
the series for any d and D.  

A. Algorithm for Dataset generation 

 
The dataset used for reviewing the SARIMA models in 

this work is simulated using eq (1). The algorithm to 
generate the data is given below. 
 
1. Assume the zero mean innovation process and specify 

the variance of the process and n the number of 
observations to be genefrated. 

2. Select the nonseasonal AR order and nonseasonal AR 
coefficients. Verify the stationarity of the selected AR 
process using pole-zero diagram.  

3. Select the nonseasonal MA order and nonseasonal MA 
coefficients. Verify the invertibility of the selected MA 
process using pole-zero diagram. 

4. Select the seasonal AR order and seasonal AR 
coefficients. Verify the stationarity of the selected AR 
process using pole-zero diagram.  

5. Select the seasonal MA order and seasonal MA 
coefficients. Verify the invertibility of the selected MA 
process using pole-zero diagram. 

6. Plug in the parameters into the eq (1) and iteratively 
compute the timeseries of length n. 

B. Algorithm for Timeseries Analysis 

 
The analysis algorithm is given below. 
1. Display the timeseries as a line plot using matplotlib 

package of python. It is necessary to ascertain that valid 
data is generated.  

2. Compute the autocorrelation and partial 
autocorrelations using the expressions in [1, 2, 3]. 

3. Display the autocorrelation and partial autocorrelations 
using matplotlib package to get gross idea about the 
nature of the data model (AR/MA/nonstationary/ 
seasonal). 

4. Conduct the unit root tests: Augmented Dickey-Fuller 
(ADF)test, Kwiatkowski-Phillips-Schmidt-Shin (KPSS)  
test, and Phillips-Perron (PP) test to check for 
nonstationarity. 

5. If timeseries is stationary, go to step 9, else go to step 6.  
6. As the timeseries is nonstationary, estimate the 

nonseasonal integrated order d, using .ndiffs() method 
of pmdarima.arima.utils  python module. 

7. Estimate the seasonal integrated order D using .nsdiffs() 
method of pmdarima.arima.utils  python module. 
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8. Difference the timeseries nonseasonally d times and 
seasonally D times to convert the series into a stationary 
series. 

9. Estimate the ARMA model orders (p,d,q)(P,D,Q) using 
autoarima or any other time series method of python. 

10. Fit the best model to the data, and compute the residual 
(i.e., the innovation/driving white noise process that is 
responsible for the given series. 

11. Evaluate the residual for whiteness and normality using 
QQ plots, and moment measures.  

12. If not satisfied with normality tests, go to step 9, else to 
step 13. 

13. Predict the test data using the best fitted model, and 
compute error measures. If not satisfied go to step 9, 
else go for forecasting optionally. 

C. Dataset  

 
A highly customized python code without using any 

timeseries (ARIMA/ARMA) packages is developed by the 
author to generate any generalized ARIMA(p, d, q)(P, D, Q, 
m) process with a deterministic or stochastic trend, 
nonseasonal and/or  seasonal ARMA, and integrated orders: 
1 and 2. As per the experience of the author, there are some 
problems with built-in methods in simulating a Timeseries 
because of version mismatch, deprecated methods,  
deprecated options, and so on.  The code can generate 
timeseries for any nonseasonal orders: (p, q) and any 
seasonal orders: (P,Q) and any season period (m). 
Simulations are carried out for wide varieties of models to 
verify the code authenticity. Here the results are presented 
for (i). nonseasonal model:    

  and 
 (ii). 

Seasonal model:  and 
  (iii). nonseasonal integrated orders: d = 

0, 1, 2 and (iv). seasonal integrated orders: D = 0, 1. The 
SARIMA model for this set of  are verified 
for invertibility and stationarity using built-in attributes of 
.isinvertible and .isstationary of statsmodels.tsa.arima_proc 
ess.ArmaProcess class. The poles and zeros are also 
visualized using customized python code as shown in Fig 3. 
The poles and zeros are computed by using the built-in 
method .roots() of numpy package. 

 

 

Fig. 1. Pole-Zero diagram of the ARIMA process used to simulate in ths 
paper. (a) Nonseasonal ARIMA (b). Seasonal ARIMA.  

 
In Fig 3, the zeros are represented as ‘o’ and poles as ‘x’. 

Fig 3(a) shows the roots of nonseasonal AR (poles) and MA 
(zeros) polynomials. Fig 3(b) shows the roots of seasonal 
AR (poles) and MA (zeros) polynomials. As all the roots are 

outside the unit circle in z-plane, the system is stable and 
invertible. Invertibility means the model can be estimated  
from the timeseries. Thus, it is worth noting down that 
random selection of AR and MA coefficients may not 
always result in a stable and predictable system.   

IV. SIMULATION EXPERIMENTS & RESULTS 

The spider IDE under Anaconda distribution is used for 
python programming. The stationary (d=0)  and 
nonstationary (d=1,2) timeseries of 

 model for the orders given in 
Table I, II and III respectively are generated using the 
customized python code myARIMAsimulate.py. 

TABLE I.  DESCRIPTION OF SIMULATED TIMESERIES (STATIONARY) 

Sl. 
No
. 

Model Specification Model Name 

1 
2 
3 
4 
5 
6 
7 
8 
9 

ARIMA(3,0,0)(0,0,0) 
ARIMA(0,0,4)(0,0,0) 
ARIMA(3,0,4)(0,0,0) 
ARIMA(0,0,0)(3,0,0) 
ARIMA(0,0,0)(0,0,3) 
ARIMA(0,0,0)(3,0,3) 
ARIMA(3,0,0)(3,0,0) 
ARIMA(0,0,4)(0,0,3) 
ARIMA(3,0,4)(3,0,3) 

3-AR model 
3-MA model 
(3,3)-ARMA model 
3-SAR model 
3-SMA model 
(3,3)-SARMA model 
(3)(3)-SAR model 
(3)(3)-SARMA model 
(3,3)(3,3)-SARMA model 

 

TABLE II.  DESCRIPTION OF SIMULATED TIMESERIES 
(NONSTATIONARY, INTEGRADED ORDER =1) 

Sl. 
No
. 

Model Specification Model Name 

1 
2 
3 
4 
5 
6 
7 
8 
9 

ARIMA(3,1,0)(0,0,0) 
ARIMA(0,1,4)(0,0,0) 
ARIMA(3,1,4)(0,0,0) 
ARIMA(0,0,0)(3,1,0) 
ARIMA(0,0,0)(0,1,3) 
ARIMA(0,0,0)(3,1,3) 
ARIMA(3,1,0)(3,1,0) 
ARIMA(0,1,4)(0,1,3) 
ARIMA(3,1,4)(3,1,3) 

3-IAR model 
3-IMA model 
(3,3)-ARIMA model 
3-SIAR model 
3-SIMA model 
(3,3)-SARIMA model 
(3)(3)-SIAR model 
(3)(3)-SARIMA model 
(3,3)(3,3)-SARIMA model 

 

TABLE III.  SIMULATED TIMESERIES (NONSTATIONARY, INTEGRADED 
ORDER =2) 

Sl. 
No
. 

Model Specification Model Name 

1 
2 
3 
4 
5 
6 
7 
8 
9 

ARIMA(3,2,0)(0,0,0) 
ARIMA(0,2,4)(0,0,0) 
ARIMA(3,2,4)(0,0,0) 
ARIMA(0,0,0)(3,2,0) 
ARIMA(0,0,0)(0,2,3) 
ARIMA(0,0,0)(3,2,3) 
ARIMA(3,2,0)(3,2,0) 
ARIMA(0,2,4)(0,2,3) 
ARIMA(3,2,4)(3,2,3) 

3-IAR model 
3-IMA model 
(3,3)-ARIMA model 
3-SIAR model 
3-SIMA model 
(3,3)-SARIMA model 
(3)(3)-SIAR model 
(3)(3)-SARIMA model 
(3,3)(3,3)-SARIMA model 

 
The timestep is taken as 1 for all simulations. The line 

plots of the timeseries generated for the models given in 
Tables I, II and III are shown in Figs 2, 3 and 4 respectively. 
The autocorrelation (ACF) and partial autocorrelation 
(PACF) are computed for the above 9 x 3 = 27 timeseries 
are computed using customized python scripts: 
myACF(X,maxlags) and myPACF(X, maxlags) where the 
arguments are timeseries (X) and maximum lags for 
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correlation computation. The plots are shown in Figs 5, 6 
and 7. It may be observed that the correlation plots peak at 
lag 6, which is the season period of the series. The partial 
autocorrelation up to 3 lags are significant for pure AR 
process. Similarly, the autocorrelations up to 4 lags are 
significant for pure MA process. Here the 3 and 4 are the 
orders of AR and MA parts respectively. 

 

 

Fig. 2. Timeseries plots of first 100 samples of simulated data (d=0) 

 
Fig. 3. Timeseries plots of first 500 samples of simulated data (d=1) 

 
Fig. 4. Timeseries plots of first 500 samples of simulated data (d=2) 

 
 

 

 
Fig. 5. Autocorrelations of 8000 samples of simulated data (d=0) 

 

 

Fig. 6. Partial autocorrelations of 8000 samples of simulated data (d=0) 
 

 

Fig. 7. Partial autocorrelations of 8000 samples of simulated data (d=1) 
 
The nonstationarity of the timeseries is assessed by using 
ndiffs() method selecting the ADF, KPSS and PP tests 
separatelt. The results are shown in Fig 8. The d=1 or 2 are 
correctly estimated by all methods. This conforms to the 
theory as well as the customized code authenticity. The p-
value for both ADF test as well as PP test for d=1,2 are 
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above the significant level ; this fails to reject the 
null hypothesis H0 meaning that the series is nonstationary 
as expected.  

 

Fig. 8. Estimation of integrated order d of timeseries by ADF, KPSS and 
PP tests.  

 Then the builtin method of python:  
pmdarima.auto_arima(params) is used estimate the model 
orders (p,d,q)(P,D,Q) of a simulated nonseasonal 
nonsationary timeseries, where the argument params is the 
set of appropriate input parameters required.  The screenshot 
of results is shown in Fig 9. Here grid search is used 
meaning all combinations of (p,d,q,P,D,Q) are searched for 
the identifying the best model.  Total 172 cominations are 
searched minimizing the AIC cost. The best model is 
ARIMA(3,2,4)(0,0,0) with no seasonal component. The 
model parameters of best model are also close to true 
values.  
 

 
 
Fig. 9. Final output  of applying autoarima() method on a simulated 
nonseasonal nonsationary timeseries.  

 
The AIC loss is also plotted for 172 combinations of orders 
in Fig 10. Please observe the decreasing loss pattern until th 
ebest order is obtained.  
 

 
Fig. 10. AIC loss is also plotted for 172 combinations of orders. 

 
The result of applying auto_arima(params) on a simulated 
seasonal nonsationary timeseries with properly selected 
max_order parameter and gridsearch is shown in Fig 11.  
 

 
Fig. 11. Final output  of applying autoarima() method on a simulated 
seasonal nonsationary timeseries 

The optimization algorithm estimated the nonseasonal 
ARMA model accuartely and seasonal ARMA model less 
accuarately. Here algorithm assumes that correct season 
period (m) is known apriopri.  

V. CONCLUSION 

In this review study, the nonstationary seasonal 
timeseries models are explored using simulated data. 
Customized python code is used for simulating the data, for 
computing (and plotting) the correlation functions, and for 
pole-zero plots. The model identification and estimation 
were done by built-in method. The saliency of this review 
study is the use of independent simulations and without 
losing the theoretical nuances. Another important aspect is 
the derivation of an explicit recursive equation for 
simulating a generic nonstationary seasonal timeseries from 
fundamentals derived from. Moreover, except for few 
statistical tests, the python code is highly customized 
without using any python timeseries packages. This makes 
the review more authentic as there is a lot of transparency in 
the code functionality.  

VI. FUTURE SCOPE OF WORK 
 
In the present review study, the nonstationary seasonal 

timeseries models are explored. The unique feature of this 
review is that independent simulations are also carried out 
along with the theory. An explicit expression for simulating 
a generic nonstationary seasonal timeseries is derived from 
fundamentals. This expression is used to simulate the 
timeseries data of different model orders (p, d, q, P, D, Q) 
and model parameters: AR, MA, SAR, SMA using open-
source python language. This avoided the problems 
associated with built-in methods such as version mismatch, 
deprecated methods, deprecated options, and so on, faced by 
the author several occasions of simulations.  Moreover, 
except for few statistical tests, the python code is highly 
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customized without using any python timeseries packages. 
This makes the review more authentic as there is a lot of 
transparency in the code functionality.  

Conclusions 
The limitation of the study is the consideration of only 

the stationary (SARMA) and nonstationary (SARIMA, 
SARIMX) models for the review. All these models are 
assumed to be homogenous models in the sense that the 
underlying innovation process has constant variance. 
However, some practical data, especially econometric data, 
is heteroscedastic i.e., has nonuniform variance. Reviewing 
such data modelling techniques can be interesting and useful 
and can be the future scope of work in this direction. 
However, the review presented in this work paves the way 
to easy understanding of advanced timeseries models like 
nonlinear and/or heteroscedastic models (GARCH) and deep 
learning timeseries models like LSTM networks. 
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