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Abstract

Properties and behaviour of hypercube networks, due to their highly symmetric nature, robustness and reliability

have always been an interesting concept for network theorists. In this paper, we have obtained new class of PBIB-

designs arising from hypercube networks Qn where blocks are subgraphs, which are also hypercube networks

Qm, of Qn. These newly constructed PBIB-designs belong to the sparse class of designs having large number of

associate classes. Also we have given a new construction of strongly regular graphs with d = q from Qn with

vertices as hyperplanes Qn−1 of Qn.
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1 Introduction

A system, according to Hayes [13], is a collection of objects called components connected to form a coherent entity

that is entitled to perform a well-defined function or a purpose. Performances of components and the manner in which

these components are interconnected determines the performance of a system. Some of the examples are computer

systems, multiple processor systems, electronic circuits, computer networks, pipeline systems, transportation systems

to name a few. The pattern in which components are connected is called an interconnection network of the system.

Interconnection networks can be modeled by a simple graph where the components are denoted as vertices and edges

are the physical communication links that connect components. Hypercube network is an important interconnection

network [27].
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Hypercube (or binary n-cube multiprocessor) structure Qn represents a loosely coupled system made up of 2n

processors interconnected in an n-dimensional binary cube. Therefore, each vertex here is said to contain a processor

and each processor can communicate to any adjacent processor through n direct communication links. There are two

distinct n-bit binary addresses which can be assigned to processors and addresses of any two adjacent processors that

differ in exactly one bit position from each other [28]. Routing messages through an n-cube structure may take one to

n links depending on the addresses of source and destination processors. For example, in a 3-cube structure, processor

with address 000 may communicate to another processor having address 111 through any six distinct paths. They are

000-100-110-111, 000-100-101-111, 000-010-110-111, 000-010-011-111, 000-001-101-111 or 000-001-011-111. A

routing procedure is designed by determining the exclusive-OR of the source vertex address with the destination vertex

address and depending on that, message is transmitted along any one of the paths. For more details about routing of

messages under certain conditions in hypercube network, readers can refer to [11].

Interconnection network is the most crucial part in parallel processing system. Owing to its interesting features,

hypercube topology is considered a suitable choice for parallel processing. Authors in [21] have presented two

innovative configurations of interconnection networks based on fractal Sierpinski graphs and a hypercube. They had

considered different topologies of Sierpinski graphs and compared it with properties of hypercube networks. Though

Sierpinski graphs have higher degree, high bisection width, lesser number of vertices than a hypercube network

of same dimension, a major drawback is that a Sierpinski graph has diameter and average distance more than the

hypercube graph. Since distance and diameter of an interconnection network is considered as an important metric that

reflects its performance in transmission of messages, a hypercube network becomes a promising choice for parallel

processing over other interconnection networks. Other properties that aid in hypercube network being used as an

interconnection network is due to its efficient self-routing for effective communication and for its reliability, robustness

and fault tolerance that can be measured using many graph parameters [12].

A hypercube of dimension n has regular degree n which makes it complicated or practically impossible to con-

struct hypercube machines of higher dimension due to its expensive cost. Another disadvantage is exponentially grow-

ing number of vertices 2n with increase in n value. Therefore, while designing a hypercube network, it is customary

to reduce the number of interconnections, without actually compromising on robustness of the network. Hence, it

becomes imperative to consider substructures based on hypercube networks that carry many important properties of

the original network hereditarily. One such method is reducing dimension of a hypercube to obtain hyperplanes.

And the other method is to consider some particular substructures or subgraphs of a hypercube. These reasons led

to introduction of special subgraphs of hypercubes such as crossed cube, twisted cube, Fibonacci cube, hierarchical

hypercube etc. [18], [23], [12]. Hierarchical hypercube network, (N = 2n, n = 2m +m,m ≥ 2) [23] was proposed

to achieve advantages in efficient communication and symmetric topology like hypercube, while being able to connect

many significant number of vertices with lower connection cost. Hierarchical hypercube network is more suitable for
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scalable multiprocessors than a hypercube network. In this paper, we have considered lower dimensional hypercubes

which are substructures of a hypercube network and obtained combinatorially consistent properties studied through

PBIB-designs arising from them. Hence they ensure the hereditary propagation of properties of a hypercube into

substructures.

Hypercubes and their subgraphs have been of great importance with interest derived from both their pure math-

ematical structures and numerous applications in coding theory, parallel computing, computer architecture, biology,

chemistry, finite automata, electrical circuits, genetics, to name a few. In chemistry it finds wide range of applications

in enumeration of isomers, isomerization reactions, visualization and computer graphics, chirality, protein-protein

interactions, intrinsically disordered proteins etc. [5], [6]. The automorphism groups of hypercubes find applications

in enumerative combinatorics, nuclear spin statistics, weakly-bound non-rigid water clusters, non-rigid molecules and

proteomics. They have also been connected to Goldbach conjecture, Fermat’s last theorem, Erdös discrepancy conjec-

ture, modern multi-dimensional representation of time measures, quantum similarity measures, biochemical imaging,

multi-dimensional imaging, classification of large data, Quantitative Shape-Activity Relations (QShAR) etc. [17],

[19], [20]. In [1], authors have found generating functions for combinatorial enumeration of colorings of different

hyperplanes, especially vertices of hypercubes which have been the topic of several studies for the past two centuries.

Combinatorial design theory is a part of combinatorics that deals with existence, construction and properties of

systems of finite sets whose arrangements satisfy certain conditions. Balanced incomplete block (BIB)-designs and

partially balanced incomplete block (PBIB)-designs are two major subfields finding a wide range of applications.

PBIB-designs have a long history and have been extensively used in agriculture and industrial experiments. Over the

years, different block designs have been constructed from graphs by taking blocks as certain subsets of the vertex set

of a graph. Some remarkable PBIB-designs obtained from a graph are due to Ionin and Shrikhande [16], Walikar

et al. [26] and Huilgol et al. [14], [15], where blocks are certain vertex subsets of a graph. Group divisible design

(GDD), is an important concept in statistical design of experiments. For the existence of such a design, there are

some restrictions on its parameters. So, given a set of parameters satisfying all the necessary constructions, it is yet

a problem to say whether such a design exists or not. In [8], authors have developed an algorithm which looks for

the existence of a group divisible design with certain restrictions. Many researchers have checked construction and

existence of group divisible designs satisfying certain properties [10], [25].

The use of 2-associate class PBIB-designs is common in experimental work. However, PBIB-designs with more

than three associate classes are not widely used because of the complicated nature of analysis and construction in-

volved. In literature, only few results can be found on construction of designs with more than four-associate classes.

Therefore, in this paper, we have constructed PBIB-designs arising from n-dimensional hypercube Qn where blocks

are vertices of hypercubes of lower dimensions with n-associate classes. We have obtained a new construction of

strongly regular graph G from hypercube Qn where vertices are hyperplanes of Qn and any two vertices are adjacent
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if the corresponding hyperplanes share an edge and these strongly regular graphs with parameters (v′, d, p, q) exhibit

the property d = q.

2 Preliminaries

First we list out some basic definitions pertaining to graph theory and design theory. Undefined graph theoretical

terms are used in the sense of Buckley and Harary [4] and undefined design theoretical terms are in the sense of

Colbourn et al. [7].

Definition 2.1. [3] A regular graph on v′ vertices and degree d is called a strongly regular graph with parameters

(v′, d, p, q) if any two adjacent vertices have p common neighbours and any two non-adjacent vertices have q common

neighbours and these numbers are independent of the pair of vertices chosen.

Remark 1. [3] All connected strongly regular graphs have diameter 2.

Remark 2. [4] If G is a strongly regular graph with parameters (v′, d, p, q), then (v′ − d− 1)q = d(d− 1− p).

Definition 2.2. [22] A balanced incomplete block (BIB)-design is a set of v elements arranged in b blocks of k

elements each in such a way that each element occurs in exactly r blocks and every pair of unordered elements in

λ blocks. The combinatorial configuration so obtained is called a (v, b, r, k, λ)-design. A BIB-design satisfies the

following conditions.

(i) vr = bk (ii) λ(v − 1) = r(k − 1) (iii) b ≥ v.

Definition 2.3. [24] Given a set {1, 2, 3, . . . , v} of v elements, a relation satisfying the following conditions is said

to be an association scheme with m classes.

• Any two elements α and β are ith associates for some i with 1 ≤ i ≤ m and this relation of being ith associates

is symmetric.

• The number of ith associates of each element is ni.

• If α and β are two elements which are ith associates, then the number of elements which are jth associates of

α and kth associates of β is pijk and is independent of the pair of ith associates α and β.

Definition 2.4. [2] Consider a set V = {1, 2, . . . , v} and an association scheme with m classes on V . A partially

balanced incomplete block (PBIB)-design represented as (v, b, r, k, λ1, . . . , λm) is a collection of b subsets of V called

blocks, each of them containing k elements (k < v) such that every element occurs in r blocks and any two elements

α and β which are ith associates occur together in λi blocks, numbers λi being independent of the choice of pairs α

and β.
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The numbers v, b, r, k, λi (i = 1, 2, . . . ,m) are called parameters of first kind and n′is and pijk are called

parameters of second kind.

Definition 2.5. [9] A group divisible design (GDD) with parameters (v = v1 + v2 + · · · + vm, b, λ
∗
1, λ
∗
2;m,n) is

an ordered pair (V,B) where V is a v-set of elements partitioned into m classes (containing n elements each) called

groups, with sizes v1, v2, . . . , vm and B is a collection of k-subsets of V , called blocks, such that each pair of elements

from the same group appear together in λ∗1 blocks and each pair of elements from distinct groups appear together in

λ∗2 blocks.

λ∗1 and λ∗2 are called indices of the design.

A group divisible design is a PBIB-design where the set of elements are partitioned into groups with two different

associates. Elements occurring together in the same group are called first associates, and elements occurring in

different groups are called second associates.

Note: In geometry, a hyperplane is a subspace whose dimension is one less than the ambient space. For example,

if a space is 3-dimensional, then its hyperplanes are 2-dimensional planes. Similarly if a space is 2-dimensional, then

its hyperplanes are 1-dimensional lines.

3 Results

In this section we give few important results that have been obtained by considering subgraphs of an n-dimensional

hypercube Qn. Before diving into results, let us view the structure of hypercubes of different dimensions and some

well-known properties of hypercubes Qn.

0 1

Figure 1: Q1
00 01

1110

Figure 2: Q2

001 101

011 111

010 110

000 100

Figure 3: Q3

HypercubeQn of dimension n is an n-regular graph on 2n vertices and 2n−1n edges, whose vertex set is the set of

all n-dimensional boolean vectors in which two vectors are joined if and only if they differ in exactly one coordinate.

Distance between two vertices is the number of coordinates that differ in their labels. We observe that Q1 = K2, a
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complete graph on two vertices, and Qn = Qn−1 ×K2, if n ≥ 2, that is, cartesian product of Qn−1 and K2. Note

that hypercube of dimension n is a self-centered, distance degree regular and unique eccentric vertex graph of diam-

eter n. Qn decomposes into Hamiltonian cycles if n is even and a perfect matching and Hamiltonian cycles if n is odd.

Next we give a generalized result for parameters of PBIB-design obtained from hypercubeQn, where we consider

blocks to be m-dimensional hypercubes Qm, which are subgraphs of Qn for 2 ≤ m < n.

Theorem 3.1. A partially balanced incomplete block (PBIB)-design exists with parameters (v, b, r, k, λ1, λ2, . . . , λm,

λm+1, . . . , λn) =
(

2n, 2n−m
(
n
m

)
,
(
n
m

)
, 2m,

(
m
1

)(
n
m

)(
n
1

) ,

(
m
2

)(
n
m

)(
n
2

) , . . . , 1, 0, . . . , 0
)

where blocks are subgraphs of Qn,

which are m-dimensional hypercubes Qm, for 2 ≤ m < n.

Proof. LetQ(m,n), wherem < n, denote the number of distinct hypercubesQm inQn. First let us count the number

of Qm at each vertex of Qn. Since Qn has regularity n, each set of m edges emanating from a vertex forms part of

a Qm. Thus, we get
(
n
m

)
number of Qm arising from each vertex of Qn. Since there are 2n vertices in Qn, we get

2n
(
n
m

)
number of Qm in Qn, but not all distinct as each Qm is counted 2m times corresponding to each vertex of Qm.

Hence, there are 2n−m
(
n
m

)
number of distinct subgraphs which are m-dimensional hypercubes Qm, in Qn, giving the

value of Q(m,n) as 2n−m
(
n
m

)
.

Clearly,
(
n
m

)
number of Qm’s arise from each vertex implying that each vertex appears in

(
n
m

)
number of Qm’s

which is the repetition number of design. As we consider blocks to be Qm, vertices of each Qm forms a block, hence,

block size is 2m.

To obtain the value of λ1 we count number of Qm’s containing a pair of vertices which are at Hamming distance

1 from each other. Consider any arbitrary vertex, say x, in Qn. Clearly x has n-distinct neighbours in Qn. Let vertex,

say y, be one of the neighbours of x. It is obvious that all these n neighbours of x do not appear together with x in any

Qm as regularity of Qm is m and m < n. Hence, these n neighbours of x are distributed uniformly in r number of

Qm’s containing vertex x symmetrically. Thus, there are
k × r
n

number of Qm’s containing pair of adjacent vertices,

x and y.

In general, vertex x has
(
n
m

)
number of vertices at distance m from x distributed uniformly in r Qm’s containing

vertex x. Thus, number of Qm’s containing a pair of vertices which are at Hamming distance i from each other is

λi =

(
m
i

)(
n
m

)(
n
i

) for i, 1 ≤ i ≤ m < n. When i = m, we get λm = 1. No pair of vertices at Hamming distance

greater than m from each other appear together in Qm as Qm is a regular graph of diameter m. So λi = 0 for i,

m+ 1 ≤ i ≤ n.

Thus, considering blocks as hypercubes Qm which are subgraphs of Qn yields a partially balanced incomplete

block (PBIB)-design with parameters (v, b, r, k, λ1, λ2, . . . , λm, λm+1, . . . , λn) =
(

2n, 2n−m
(
n
m

)
,
(
n
m

)
, 2m,

(
m
1

)(
n
m

)(
n
1

) ,
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(
m
2

)(
n
m

)(
n
2

) , . . . , 1, 0, . . . , 0
)

.

Corollary 3.1. There does not exist a group divisible design where blocks are subgraphs Qm of hypercube Qn, for

n ≥ 3 and 2 ≤ m < n.

Proof. Grouping the vertices of Qn into two groups, one containing vertices of even parity and the other containing

vertices of odd parity, we see that for the design to be group divisible design, all λi should be equal when i is even

(odd). This implies that any pair of vertices from the same group should occur in equal number of blocks which is

a necessary requirement for a group divisible design to exist. But λi, 1 ≤ i ≤ n, in Theorem 3.1 do not satisfy this

condition. Hence, design obtained in Theorem 3.1 cannot form a group divisible design when n ≥ 3.

Illustration: Consider a 3-dimensional hypercube Q3 as shown in Figure 3. Note that the vertices of Q3 are

labeled as follows: {000, 110, 101, 011, 100, 010, 001, 111}. The hyperplanes Q2 that are subgraphs of Q3 are

{000, 100, 110, 010}, {000, 010, 011, 001}, {100, 110, 111, 101}, {101, 111, 011, 001},
{010, 110, 111, 011} and {000, 100, 101, 001}. We see that each vertex appears in three Q2’s. Any pair of adjacent

vertices appear together in 2 Q2’s and any pair of vertices which are at Hamming distance 2 from each other appear

together in exactly one Q2. Since the blocks are of dimension 2, no two vertices which are at Hamming distance 3

from each other appear together in any block. Considering the above six 2-dimensional hypercubes Q2 as blocks,

we get parameters of PBIB-design as (v, b, r, k, λ1, λ2, λ3) = (8, 6, 3, 4, 2, 1, 0). Clearly, we cannot obtain a group

divisible design from these blocks. The vertex set of Q3 can be partitioned into two groups {000, 110, 101, 011} and

{100, 010, 001, 111}. The first group has even parity vertices including the vertex containing 0 in all coordinates and

second group has odd parity vertices. Any two vertices from the same group appear together in one Q2 but any two

vertices from different groups, especially which are at Hamming distance 1 appear together in two blocks and a pair

of vertices which are at Hamming distance 3 from each other do not appear together in any block. Hence, λ∗2 is not

unique implying that group divisible design cannot be obtained by considering blocks as hyperplanes of Q3.

Now, we give a construction for a graph G where vertices of G are hyperplanes of Qn and any two vertices are

adjacent if the corresponding hyperplanes share an edge. Theorem 3.2 proves that such graphsG obtained are strongly

regular with parameters (2n, 2n− 2, 2n− 4, 2n− 2).

Theorem 3.2. A strongly regular graph G having parameters (v′, d, p, q) = (2n, 2n− 2, 2n− 4, 2n− 2) is obtained

from n-dimensional hypercubeQn where vertices of graphG are hyperplanesQn−1, and any two vertices are adjacent

if the corresponding hyperplanes share an edge.

Proof. We know that there are 2n−m
(
n
m

)
number of hypercubes Qm in Qn. Taking m to be n − 1, we count the

number of hyperplanes in a hypercube Qn. Thus, there are 2n number of hyperplanes Qn−1 in Qn. Taking each
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Qn−1 as a vertex, we form a graph G where any two vertices in G are adjacent if the corresponding hyperplanes

share an edge. Consider a vertex, say, x in G. Clearly there is exactly one vertex, say, z in G whose corresponding

hyperplane has all 2n−1 labeled vertices distinct from that in x, thus forming an eccentric vertex of x. This is true for

all 2n vertices. Hence, G is unique eccentric vertex graph with regularity 2n− 2. Clearly G has diameter 2.

Consider a pair of adjacent vertices, say, x and y in G. Since G is a unique eccentric vertex graph, remaining

2n− 4 vertices are adjacent to both x and y. Let x and z be a pair of non-adjacent vertices. Clearly, they are eccentric

vertices of each other and remaining 2n − 2 vertices are adjacent to both x and z. Since vertex x is arbitrary, the

same argument holds for all other vertices of G. Hence, graph G is strongly regular with srg parameters (v′, d, p, q)

= (2n, 2n− 2, 2n− 4, 2n− 2).

Illustration: Consider a 4-dimensional hypercube Q4 shown in Figure 4. Vertices of Q4 are 4-tuples with any two

vertices adjacent if they are at Hamming distance 1 as shown. There are 8 distinct hyperplanes which can be obtained

from Q4 as subgraphs. Constructing the graph as mentioned in Theorem 3.2 yields a strongly regular graph G.

0001 0101 1001 1101

0011 0111 1011 1111

0010 0110 1010 1110

0000 0100 1000 1100

Figure 4: 4-dimensional hypercube Q4

Below are distinct hyperplanes Q3 obtained from Q4 which form vertices of graph G.
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0110 1110

0100 1100

0000 1000

0010 1010

Figure 5: v1

0101 1101

0100 1100

0000 1000

0001 1001

Figure 6: v2

0011 1011

0010 1010

0000 1000

0001 1001

Figure 7: v3

0101 0111

0100 0110

0000 0010

0001 0011

Figure 8: v4

1011 1111

1010 1110

1000 1100

1001 1101

Figure 9: v5

0111 1111

0101 1101

0100 1100

0110 1110

Figure 10: v6

0111 1111

0110 1110

0010 1010

0011 1011

Figure 11: v7

0111 1111

0101 1101

0001 1001

0011 1011

Figure 12: v8

Considering these hyperplanes, Figure 5 - Figure 12, as vertices, we obtain adjacencies of each vertex as follows:

v1 → {v2, v3, v4, v5, v6, v7}; v2 → {v1, v3, v4, v5, v6, v8}; v3 → {v1, v2, v4, v5, v7, v8}; v4 → {v1, v2, v3, v6, v7, v8};
v5 → {v1, v2, v3, v6, v7, v8}; v6 → {v1, v2, v4, v5, v7, v8}; v7 → {v1, v3, v4, v5, v6, v8}; v8 → {v2, v3, v4, v5, v6, v7}.
We observe that each vertex vi, for 1 ≤ i ≤ 8, has regularity 6. Being unique eccentric vertex graph of regularity 6,

any pair of adjacent vertices will have 4 common neighbours. Since G is unique eccentric vertex graph, each pair of

eccentric vertices will have same set of neighbours. Hence, we see that q = d. Thus, graph G obtained is strongly
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regular with parameters (v′, d, p, q) = (8, 6, 4, 6).

4 Conclusion

Hypercube networks have always been an interesting topic for research enthusiasts in various fields due to their graph

properties such as being bipartite, Hamiltonian, distance-regular, unique eccentric vertex graph and highly symmetric

nature. In order to reduce the number of interconnections within hypercube network, without actually compromising

on the robustness of a network, we have considered subgraphs which are also hypercubes of lower dimension, arising

from hypercube Qn that carry many important hereditary properties of the original network. Here, we obtained

general expression for new class of PBIB-designs arising from hypercube Qn where blocks are subgraphs Qm of Qn

for m < n and n ≥ 3. These designs fall into the category of PBIB-designs with large number of associates classes

which are found sparsely in literature. Also we give a construction of a strongly regular graph with d = q arising from

hypercubes Qn taking vertices as hyperplanes.
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