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Abstract  

Wireless Sensor Networks (WSNs) form the backbone of modern IoT ecosystems, enabling 
applications in smart cities, healthcare, industry, and environmental monitoring. However, 
their performance is often constrained by limited energy resources, high latency, and unreliable 
data delivery. This paper explores how Machine Learning (ML) can transform routing 
strategies to overcome these challenges. Six algorithms—Q-Learning, K-Means Clustering, 
Grey Wolf Optimizer, Support Vector Machines (SVM), Deep Neural Networks (DNN), and the 
traditional LEACH protocol—are evaluated across five critical parameters: energy 
consumption, network lifetime, packet delivery ratio, latency, and throughput. Simulation 
results reveal that ML-driven approaches consistently outperform LEACH, with DNN 
achieving the best overall performance and Grey Wolf Optimizer excelling in network 
longevity. These findings underscore the potential of ML to build sustainable, adaptive, and 
intelligent WSNs, paving the way for robust IoT infrastructures. Future directions include 
hybrid ML models, edge computing integration, federated learning, and blockchain-based 
security enhancements. 
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I. Introduction  

Wireless Sensor Networks (WSNs) have become a cornerstone of modern digital 
infrastructure, powering applications that range from environmental monitoring and precision 
agriculture to smart cities, healthcare, and industrial automation. These networks consist of 
spatially distributed sensor nodes that collect and transmit data to a central base station. 
Despite their versatility, WSNs face a fundamental challenge: the limited energy resources of 
sensor nodes. Once a node’s battery is depleted, its functionality ceases, which can 
compromise the reliability and longevity of the entire network. 

Traditional routing protocols, such as LEACH, were designed to reduce communication 
overhead and extend network lifetime. However, they often struggle in dynamic 
environments where traffic patterns, node density, and energy distribution change rapidly. As 
IoT ecosystems expand, the demand for routing strategies that are not only energy-efficient 
but also adaptive, reliable, and scalable has grown significantly. 

Machine Learning (ML) offers a promising solution. By enabling sensor nodes and base 
stations to learn from data, predict network conditions, and adapt routing decisions in real 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

PAGE NO: 84



time, ML can transform WSNs into intelligent systems. This study explores six algorithms—
Q-Learning, K-Means Clustering, Grey Wolf Optimizer, Support Vector Machines (SVM), 
Deep Neural Networks (DNN), and LEACH—evaluating their performance across five 
critical parameters: energy consumption, network lifetime, packet delivery ratio, latency, and 
throughput. The goal is to provide a comprehensive comparative analysis that highlights the 
strengths and limitations of each approach, while identifying pathways for future research. 

II. Literature Review  

Research into energy-efficient routing in WSNs has evolved significantly over the past two 
decades. Early work focused on clustering protocols such as LEACH, which reduced 
communication overhead by designating cluster heads to aggregate and forward data. While 
effective in static scenarios, LEACH’s inability to adapt to dynamic traffic and energy 
variations soon became apparent. 

To address these limitations, researchers began exploring metaheuristic algorithms inspired 
by natural processes. For example, Rodríguez et al. [1] proposed the Yellow Saddle Goatfish 
Algorithm, which improved cluster head selection by mimicking fish schooling behavior. 
Similarly, Chouhan and Jain [4] introduced Tunicate Swarm Grey Wolf Optimization, 
combining swarm intelligence with predator-prey dynamics to enhance multipath routing. 
These approaches demonstrated that biologically inspired optimization could significantly 
extend network lifetime and balance energy consumption. 

Parallel to metaheuristics, clustering and classification techniques gained traction. K-Means 
clustering was applied to group nodes based on proximity, reducing redundant transmissions 
[2]. Support Vector Machines (SVMs) were later introduced to classify nodes according to 
energy levels and traffic load, enabling predictive routing decisions. While these methods 
improved efficiency, they often lacked adaptability in highly dynamic environments. 

The rise of reinforcement learning marked another turning point. Q-Learning, in particular, 
allowed nodes to learn optimal routing paths by rewarding energy-efficient transmissions and 
penalizing costly ones [5]. This adaptive approach proved effective in balancing energy 
consumption and extending network lifetime, especially in networks with fluctuating traffic. 

More recently, deep learning has emerged as a powerful tool for WSNs. Deep Neural 
Networks (DNNs) can capture complex patterns in traffic and energy consumption, enabling 
highly adaptive routing strategies. Studies have shown that DNNs outperform traditional 
methods in terms of packet delivery ratio, latency, and throughput, though their 
computational demands remain a challenge for resource-constrained sensor nodes. 

In addition, researchers have explored fuzzy logic systems for congestion control [6], hybrid 
models that combine metaheuristics with reinforcement learning, and IoT-integrated 
frameworks that leverage edge computing for real-time decision-making. Despite these 
advances, most studies remain simulation-based, with limited deployment in real-world 
environments. Furthermore, issues of scalability, privacy, and security remain underexplored, 
highlighting the need for continued innovation. 
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III. Research Gaps  

Although significant progress has been made in designing energy-efficient routing protocols 
for WSNs, several important gaps remain that limit their practical adoption. Most existing 
studies are confined to simulation environments, which, while useful for testing algorithms, 
fail to capture the unpredictability of real-world deployments. Sensor nodes in practice face 
hardware limitations, environmental interference, and irregular traffic patterns that 
simulations often overlook. This disconnect means that many promising algorithms have yet 
to be validated under realistic conditions. 

Another gap lies in the lack of standardization. Researchers have proposed a wide variety of 
ML-based routing strategies, ranging from clustering methods to reinforcement learning and 
metaheuristics. However, there is no unified framework or benchmark that allows for 
consistent comparison across studies. As a result, it is difficult to determine which approaches 
are truly most effective under different scenarios. 

Furthermore, while energy efficiency has been the dominant focus, other critical parameters 
such as latency, throughput, and reliability have often been treated as secondary concerns. In 
modern IoT applications—such as healthcare monitoring, industrial automation, and smart 
transportation—low latency and high throughput are just as important as conserving energy. 
The absence of multi-parameter evaluations leaves a gap in understanding how algorithms 
perform holistically. 

Finally, integration with emerging technologies remains underexplored. Edge computing, 
federated learning, and blockchain offer powerful tools to enhance scalability, privacy, and 
security in WSNs. Yet, few studies have investigated how ML-based routing can be combined 
with these technologies to create robust, future-ready networks. 

IV. Methodology  

To address the identified research gaps, this study adopts a comparative approach that 
evaluates six different routing strategies in Wireless Sensor Networks (WSNs). The 
methodology was designed to provide a fair and comprehensive assessment across multiple 
performance dimensions, ensuring that the strengths and weaknesses of each algorithm could 
be clearly observed. 

A. Algorithms Considered 

Six algorithms were selected based on their prominence in prior research and their potential 
to address energy efficiency and adaptability challenges in WSNs: 

 LEACH (Baseline Protocol): A traditional clustering protocol used as the 
benchmark. 

 Q-Learning (Reinforcement Learning): Learns optimal routing paths through trial 
and error, rewarding energy-efficient decisions. 

 K-Means Clustering: Groups nodes into clusters to reduce redundant transmissions, 
though limited in adaptability. 

 Grey Wolf Optimizer (Metaheuristic): Inspired by wolf hunting behavior, 
dynamically optimizes cluster head selection and routing paths. 
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 Support Vector Machines (SVM): Classifies nodes based on energy levels and 
traffic load, enabling predictive routing decisions. 

 Deep Neural Networks (DNN): Learns complex patterns in traffic and energy 
consumption, offering highly adaptive routing under dynamic conditions. 

Together, these algorithms represent a spectrum of approaches: traditional, clustering-based, 
metaheuristic, reinforcement learning, and deep learning. 

B. Simulation Setup 

To ensure consistency, all algorithms were tested under the same simulated environment: 

 Network Size: 100 sensor nodes randomly deployed in a 100m × 100m area. 

 Initial Energy: Each node initialized with 2 Joules of energy. 

 Traffic Model: Nodes generate periodic data packets transmitted to the base station. 

 Evaluation Metrics: Five parameters were measured — 

1. Average Energy Consumption (J) 

2. Network Lifetime (Rounds) 

3. Packet Delivery Ratio (%) 

4. Latency (ms) 

5. Throughput (kbps) 

C. Comparative Framework 

Each algorithm was executed under identical conditions, and results were averaged across 
multiple runs to minimize bias. The inclusion of latency and throughput alongside traditional 
energy metrics ensures a holistic evaluation, reflecting the real-world demands of IoT 
applications where speed and reliability are as critical as energy efficiency. 

V.  Results  

To provide a holistic comparison, six algorithms—LEACH, Q-Learning, K-Means 
Clustering, Grey Wolf Optimizer (GWO), Support Vector Machines (SVM), and Deep Neural 
Networks (DNN)—were evaluated across five critical parameters: average energy 
consumption, network lifetime, packet delivery ratio (PDR), latency, and throughput. 
Each parameter is defined mathematically and then discussed in relation to the performance 
of the algorithms. 

A. Average Energy Consumption 

Energy consumption is measured as the average energy used per node during communication: 

���� =
∑ �����

�

�
 

where Ei is the energy consumed by node i, and N is the total number of nodes. 

 LEACH: Consumes the most energy (1.25 J), as cluster head rotation is not adaptive. 
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 Q-Learning: Reduces consumption (0.95 J) by learning energy-efficient paths. 

 K-Means: Moderate improvement (1.05 J), but clustering is static. 

 GWO: Achieves low consumption (0.92 J) by dynamically optimizing cluster heads. 

 SVM: Slightly better than K-Means (0.97 J), due to classification-based routing. 

 DNN: Lowest consumption (0.90 J), as deep learning adapts to traffic and balances 
load effectively. 

 

B. Network Lifetime 

Network lifetime is defined as the number of rounds until the first node dies (FND) or until a 
significant portion of nodes are depleted: 

� = � ��� 

where R FND is the round when the first node dies. 

 LEACH: Shortest lifetime (850 rounds). 

 Q-Learning: Extends lifetime to 1100 rounds by adaptive learning. 

 K-Means: Achieves 1000 rounds, better than LEACH but less adaptive. 

 GWO: Long lifetime (1150 rounds), due to balanced energy distribution. 

 SVM: 1080 rounds, showing predictive routing helps extend life. 

 DNN: Longest lifetime (1200 rounds), as deep learning optimizes routing decisions 
continuously. 

C. Packet Delivery Ratio (PDR) 

PDR measures reliability of data delivery: 

��� =  
������� ��������

������� ����
 × 100 

 LEACH: Lowest reliability (82%). 

 Q-Learning: Improves delivery to 90%. 

 K-Means: Achieves 88%, but clustering limits adaptability. 

 GWO: Strong reliability (91%). 

 SVM: 89%, slightly better than K-Means. 

 DNN: Highest reliability (93%), ensuring robust communication. 

D. Latency 

Latency is the average time taken for a packet to travel from source to destination: 
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Latency =
∑ (� �������� , � − � ����, �)���

�

�
 

where M is the number of packets. 

 LEACH: Highest latency (120 ms), due to inefficient routing. 

 Q-Learning: Reduces latency to 95 ms by learning faster paths. 

 K-Means: 100 ms, moderate improvement. 

 GWO: 90 ms, efficient cluster head selection reduces delay. 

 SVM: 92 ms, predictive routing lowers latency. 

 DNN: Lowest latency (85 ms), ideal for real-time IoT applications. 

E. Throughput 

Throughput measures the rate of successful data delivery: 

Throughput =
Packets��������  � Packet size 

Total Time
 

 LEACH: Lowest throughput (180 kbps). 

 Q-Learning: Improves throughput to 220 kbps. 

 K-Means: 210 kbps, slightly better than LEACH. 

 GWO: 230 kbps, strong performance due to adaptive routing. 

 SVM: 225 kbps, competitive with Q-Learning. 

 DNN: Highest throughput (240 kbps), reflecting superior adaptability and efficiency. 

 
Algorithm Energy 

(Joules) 
Lifetime 
(Rounds) 

PDF 
(%) 

Latency 
(ms) 

Throughput 
(kbps) 

LEACH 
 

1.25 850 82 120 180 

Q -
Learning 

0.95 1100 90 95 220 

K- Mean 
Clustering 

1.05 1000 88 100 210 

Grey Wolf 
Optimiser 

0.92 1150 91 90 230 

Support 
Vector 
Machine 

0.97 1080 89 92 225 

Deep 
Neural 
Network 

0.90 1200 93 85 240 

                                   Table 1: Performance Analysis 
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VI. Graphical Results  
To complement the numerical analysis, five comparative plots were generated for the 
six algorithms across the five parameters. These visualizations provide an intuitive 
understanding of how each approach performs and highlight the trade-offs between 
energy efficiency, reliability, and responsiveness. 

 

                                           A. Energy Consumption (Fig. 1) 

The bar chart of average energy consumption clearly shows LEACH as the least 
efficient, consuming 1.25 J per node. In contrast, DNN achieves the lowest 
consumption (0.90 J), closely followed by GWO (0.92 J). The downward trend from 
LEACH to ML-based methods illustrates how adaptive learning and optimization 
reduce redundant transmissions and balance energy usage across the network.

                                                     
                                               B. Network Lifetime (Fig. 2) 
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The line chart of network lifetime highlights the dramatic improvement offered by 
ML algorithms. LEACH terminates early at 850 rounds, while DNN extends the 
lifetime to 1200 rounds. GWO also performs strongly (1150 rounds), showing the 
effectiveness of metaheuristic optimization in prolonging node survival. The steady 
rise across Q-Learning, SVM, and DNN demonstrates how adaptability directly 
translates into longer operational periods.                                                            

 

                                                     C. Packet Delivery Ratio (Fig. 3) 

The PDR bar chart emphasizes reliability. LEACH struggles at 82%, while DNN achieves 
93%, ensuring nearly all packets reach the base station. GWO and Q-Learning also perform 
well (91% and 90% respectively), reflecting their ability to adapt routing paths under 
dynamic traffic. The visualization makes clear that ML approaches not only save energy but 
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also improve communication reliability.

                                                           

                                                                  D. Latency (Fig. 4) 

Latency comparisons reveal the responsiveness of each algorithm. LEACH suffers 
from the highest delay (120 ms), unsuitable for real-time IoT applications. DNN 
achieves the lowest latency (85 ms), followed by GWO (90 ms). This reduction in 
delay is critical for applications such as healthcare monitoring, where timely data 
delivery can be life-saving. The plot shows how ML methods minimize routing 
overhead and accelerate packet transmission. 

    
                                                       E. Throughput (Fig. 5) 
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Throughput results highlight the efficiency of data handling. LEACH again lags 
behind at 180 kbps, while DNN leads with 240 kbps. GWO (230 kbps) and 
Q-Learning (220 kbps) also show strong performance. The bar chart demonstrates 
that ML-based routing not only conserves energy but also maximizes the volume of 
data successfully delivered, a crucial factor for dense IoT deployments. 
 
Overall Interpretation 
The graphical results reinforce the numerical findings: 

 DNN consistently outperforms all other algorithms across every parameter, 
making it the most powerful but computationally demanding option. 

 GWO offers a strong balance between efficiency and adaptability, excelling in 
network lifetime and throughput. 

 Q-Learning provides steady improvements across all metrics, proving versatile in 
dynamic environments. 

 SVM and K-Means deliver moderate gains, but their static nature limits 
adaptability. 

 LEACH remains the weakest, underscoring the need for ML integration in modern 
WSNs. 
 

VII. Discussion  
The comparative evaluation across six algorithms and five parameters paints a clear 
picture of how Machine Learning can reshape routing in Wireless Sensor Networks 
(WSNs). By analyzing both numerical data and graphical trends, several important 
insights emerge. 
 
Energy efficiency is the cornerstone of WSN sustainability. The results show that 
LEACH, while historically important, consumes the most energy due to its static 
clustering approach. In contrast, DNN and GWO achieve the lowest consumption, 
thanks to their ability to adapt routing decisions dynamically. The bar chart (Fig. 1) 
makes this difference visually striking: ML-based methods consistently reduce 
redundant transmissions and balance energy usage across nodes, directly prolonging 
network viability. 
 
Network lifetime reflects how long the network can function before nodes begin to 
fail. The line chart (Fig. 2) demonstrates a steady improvement from LEACH to ML 
algorithms. DNN achieves the longest lifetime (1200 rounds), followed closely by 
GWO (1150 rounds). This shows that adaptive learning and metaheuristic 
optimization not only conserve energy but also distribute it more evenly, preventing 
premature node death. Q-Learning also performs strongly, highlighting the value of 
reinforcement learning in dynamic environments. 
 
Reliability of communication is captured by PDR. The bar chart (Fig. 3) reveals that 
LEACH struggles at 82%, while DNN achieves 93%, ensuring nearly all packets 
reach the base station. GWO and Q-Learning also show strong reliability, reflecting 
their ability to adapt routing paths under varying traffic loads. This improvement is 
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critical for IoT applications where data integrity is non-negotiable, such as healthcare 
monitoring or industrial automation. 
 
Latency determines how quickly data travels from source to destination. The results 
(Fig. 4) show that LEACH suffers from the highest delay (120 ms), unsuitable for 
real-time applications. DNN achieves the lowest latency (85 ms), making it ideal for 
time-sensitive scenarios like emergency response or smart transportation. GWO and 
SVM also reduce latency significantly compared to LEACH, proving that intelligent 
routing minimizes overhead and accelerates packet delivery. 
 
Throughput reflects the volume of data successfully delivered over time. The bar 
chart (Fig. 5) highlights DNN as the leader (240 kbps), followed by GWO (230 
kbps). Higher throughput indicates better utilization of network resources and 
improved scalability for dense IoT deployments. Q-Learning and SVM also show 
competitive performance, while LEACH lags far behind, underscoring its limitations 
in modern data-intensive environments. 
 
Overall Insights 
Taken together, the results confirm that ML-based routing protocols consistently 
outperform traditional approaches across all parameters. 

 DNN emerges as the most powerful, delivering superior energy efficiency, reliability, 
latency, and throughput, though its computational demands may limit deployment in 
resource-constrained nodes. 

 GWO offers an excellent balance, excelling in network lifetime and throughput while 
remaining lightweight. 

 Q-Learning provides steady, versatile improvements across metrics, making it a 
practical choice for dynamic WSNs. 

 SVM and K-Means deliver incremental gains, but their static or classification-based 
nature limits adaptability. 

 LEACH, while foundational, consistently underperforms, highlighting the need for 
intelligent, adaptive routing in modern IoT ecosystems. 
 

VIII. Future Scope  
The results of this study highlight not only the current strengths of Machine Learning 
in Wireless Sensor Networks (WSNs) but also the exciting possibilities that lie ahead. 
As IoT ecosystems continue to expand, routing protocols must evolve to meet the 
demands of scalability, security, and real-time responsiveness. Several promising 
directions emerge from this work: 
1. Hybrid Machine Learning Models 
No single algorithm can perfectly balance energy efficiency, reliability, and 
computational cost. Future research should explore hybrid models that combine the 
adaptability of reinforcement learning, the optimization power of metaheuristics, and 
the predictive accuracy of deep learning. Such models could dynamically switch 
strategies depending on network conditions, ensuring optimal performance at all 
times. 
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2. Edge Computing Integration 
Deep learning methods, while powerful, are computationally intensive. Integrating 
edge computing can offload complex ML tasks to gateway nodes or nearby servers, 
reducing the burden on individual sensors. This approach would allow 
resource-constrained nodes to benefit from advanced ML without exhausting their 
energy reserves. 
3. Federated Learning for Privacy and Scalability 
As WSNs become part of larger IoT infrastructures, federated learning offers a way 
to train models collaboratively across multiple networks without sharing raw data. 
This preserves privacy while enabling scalability, ensuring that routing strategies 
improve continuously as networks grow and evolve. 
4. Blockchain-Enabled Security 
Routing decisions in WSNs are vulnerable to malicious attacks and data tampering. 
Incorporating blockchain technology can provide a decentralized, tamper-proof 
ledger of routing decisions, enhancing trust and security. This is particularly 
important for critical applications such as healthcare, defense, and smart grids. 
5. Real-World Deployments and Standardization 
Most current studies remain simulation‑based. Future work must focus on real‑world 
deployments to validate ML algorithms under practical conditions such as 
environmental interference, hardware limitations, and unpredictable traffic. Alongside 
this, the development of standardized benchmarks and frameworks will allow 
researchers to compare algorithms consistently and accelerate progress in the field. 
 
By pursuing these directions, WSNs can evolve from simple data‑collection systems 
into intelligent, autonomous networks that adapt seamlessly to changing 
environments. The integration of ML with edge computing, federated learning, and 
blockchain will not only extend network lifetime but also ensure that WSNs remain 
secure, scalable, and responsive. Ultimately, these advancements will pave the way 
for robust IoT infrastructures capable of supporting the next generation of smart 
cities, healthcare systems, and industrial automation. 

IX. Conclusion  

This study clearly demonstrates that the integration of Machine Learning into routing 
protocols can transform the performance of Wireless Sensor Networks (WSNs). By 
evaluating five critical parameters energy consumption, network lifetime, packet delivery 
ratio, latency, and throughput. we gain a holistic understanding of how different ML 
approaches reshape the efficiency and reliability of sensor networks. 

The results show that Deep Neural Networks (DNNs) consistently deliver the strongest 
outcomes. They not only minimize energy consumption but also achieve the highest packet 
delivery ratio, lowest latency, and greatest throughput. These qualities make DNNs 
particularly well-suited for complex, data-intensive applications such as smart cities, 
healthcare monitoring, and industrial IoT, where both speed and reliability are paramount. 

The Grey Wolf Optimizer (GWO) emerges as another powerful contender, extending 
network lifetime more effectively than any other algorithm while maintaining strong 
throughput. Its lightweight nature and adaptability make it an excellent choice for resource-
constrained environments where computational overhead must be minimized. 
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Q-Learning provides balanced improvements across all metrics, demonstrating versatility in 
dynamic WSN scenarios. It adapts well to changing traffic conditions and energy 
distributions, making it a practical solution for networks that demand flexibility without 
excessive complexity. 

Meanwhile, Support Vector Machines (SVMs) and K-Means clustering offer incremental 
gains. While they improve upon traditional LEACH, their static or classification-based 
approaches limit their adaptability compared to reinforcement learning and deep learning 
methods. They may still be useful in relatively stable environments, but they fall short in 
highly dynamic or large-scale deployments. 

Taken together, these findings highlight the transformative potential of ML-driven 
routing. By intelligently managing energy, reducing delays, and improving data reliability, 
ML approaches pave the way for sustainable, intelligent, and secure IoT infrastructures. The 
implications extend beyond academic interest—such advancements are essential for building 
resilient smart cities, efficient industrial systems, and responsive healthcare networks. 

Looking ahead, future research should explore hybrid ML models that combine the strengths 
of reinforcement learning, metaheuristics, and deep learning. Integration with edge 
computing will help reduce computational overhead, while federated learning can enable 
collaborative training without compromising privacy. Finally, blockchain technologies hold 
promise for securing routing decisions and ensuring trust in distributed sensor environments. 
Together, these directions will help address challenges of scalability, privacy, and security, 
bringing us closer to fully intelligent and autonomous WSNs. 
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