
A BLE Characteristic Analysis And Enhancement

Using Attify OS For IoT Devices
Rachit Parmar

PG Research Scholar,

Department of Internet of Things (IoT)
GTU – School of Engineering and Technology

Ahmedabad India

Raj Hakani

Assistant Professor

Department of Internet of Things (IoT)
GTU – School of Engineering and Technology

Ahmedabad India

Abstract— Bluetooth Low Energy (BLE) is a ubiquitous IoT

connectivity technology, but its rapid adoption has outpaced

security measures. We analyze BLE device security by

implementing Denial-of-Service (DoS) and Man-in-the-Middle

(MITM) attacks using off-the-shelf tools on Attify OS. We study

BLE protocol weaknesses, develop attacks with gatttool and

Bettercap, and build a real-time Python monitor (using bluepy) to

scan for unauthorized BLE devices. Experimental results (on an

ESP32 peripheral and BLE dongle) demonstrate that simple

scripts can induce device crashes and spoof service data, with

observable CPU spikes and connection disruption. Our BLE

monitor (with configurable whitelist) detects scanning and

unauthorized connections with high accuracy and low latency. We

report comparative metrics (attack duration, resource usage) and

discuss how layered defenses (secure pairing, IDS integration) can

mitigate these threats. The findings underline the need for

continuous BLE monitoring and improved BLE 5.x protocols for

IoT security. Bluetooth Low Energy (BLE) is a ubiquitous IoT

connectivity technology, but its rapid adoption has outpaced

security measures. We analyze BLE device security by

implementing Denial-of-Service (DoS) and Man-in-the-Middle

(MITM) attacks using off-the-shelf tools on Attify OS. We study

BLE protocol weaknesses, develop attacks with gatttool and

Bettercap, and build a real-time Python monitor (using bluepy) to

scan for unauthorized BLE devices. Experimental results (on an

ESP32 peripheral and BLE dongle) demonstrate that simple

scripts can induce device crashes and spoof service data, with

observable CPU spikes and connection disruption. Our BLE

monitor (with configurable whitelist) detects scanning and

unauthorized connections with high accuracy and low latency. We

report comparative metrics (attack duration, resource usage) and

discuss how layered defenses (secure pairing, IDS integration) can

mitigate these threats. The findings underline the need for

continuous BLE monitoring and improved BLE 5.x protocols for

IoT security.

Keywords— Bluetooth Low Energy (BLE), IoT Security, ESP32

Microcontroller, Vulnerability Analysis, Security Frame work.

I. INTRODUCTION (HEADING 1)

Bluetooth Low Energy (BLE) has become the de facto wireless

standard for IoT devices due to its ultra-low power operation

and widespread support[1][2]. BLE chipsets are expected to

appear in over 97% of Bluetooth-capable devices by 2027 [1].

Applications range from fitness trackers and medical sensors to

smart home and industrial automation. Despite its success, BLE

has inherent security challenges. Unlike traditional Bluetooth,

BLE was designed for quick pairing and low overhead,

meaning some security features (e.g. key generation, address

randomization) may be weak or optional[3][4]. For example, a

device’s random number generator quality can undermine

encryption strength[3]. In practice, device manufacturers often

fail to implement full security measures, so “some

manufacturers fail to implement proper security mechanisms”

in BLE products [4]

Common BLE threats include eavesdropping (sniffing

unencrypted data), MITM (impersonation between paired

devices), and Denial-of-Service (DoS) via battery depletion or

jamming[3]. MITM attacks allow an adversary to read or alter

exchanged data, while DoS attacks can crash devices or drain

their power[3]. Recent research has uncovered critical BLE

vulnerabilities: for example, the BLESA attack shows that even

paired devices can be spoofed during reconnection[5], and the

“Injection-Free” attack can force re-pairing to enable MITM or

DoS[6]. High-profile BLE flaws (like SweynTooth) let

attackers remotely crash or freeze devices[7]. Given these risks,

it is essential to analyze BLE security in IoT deployments and

develop monitoring tools to detect attacks in real time. This

paper presents a comprehensive study: we first review BLE

architecture and known attacks, then implement DoS and

MITM exploits in an AttifyOS testbed, and finally create a

Python-based BLE intrusion monitor using bluepy. We

evaluate attack impacts and monitor performance, and discuss

how layered defenses can improve BLE security in IoT

systems.

II. LITERATURE REVIEW

BLE security has been surveyed extensively. Cäsar et al.

provide a recent taxonomy of BLE threats, noting issues such

as MITM, address spoofing, cryptographic flaws, DoS, and

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE NO: 766

tracking[2]. They emphasize that BLE has evolved (now at

version 5.2) with more secure pairing methods, but “security

weaknesses in the specification as well as in individual

Bluetooth stack implementations have been identified”[2].

Bello and Perez evaluated consumer BLE devices (wearable

heart-rate monitors and keyboards) and found that many

manufacturers omit standard security features[4]. They

advocate better user awareness of BLE security.

Specific attacks include BLESA (Bluetooth Low Energy

Spoofing Attacks) by Wu et al., which exploit reconnection

logic to impersonate a previously-paired device[5]. The

BLESA work found that Linux, Android, and iOS

implementations could be fooled during reconnect. Another

study by Santos et al. describes a “BLE Injection-Free” attack

that forces two bonded devices to renegotiate keys. This novel

attack enables either an MITM or a DoS on devices without

active jamming[6]. Apple’s proprietary Continuity services

have also been shown vulnerable: Stute et al. discovered BLE

advertisement flaws allowing device tracking, DoS (blocking

services), and a Wi-Fi MITM attack[5]. These examples

underline that both open and closed BLE ecosystems are

susceptible.

DoS vectors are notable. The SweynTooth research

(coordinated by CISA) disclosed a family of BLE SoC

implementation bugs: an attacker in radio range can exploit

these to trigger deadlocks and crashes in BLE controllers,

effectively denying all BLE service[7]. Other DoS attacks

include flooding the BLE radio or sending malformed L2CAP

packets to exhaust resources[3][7]. On the monitoring side,

prior work has been sparse. Some research has proposed

embedding intrusion detection into BLE controllers, but most

BLE attacks rely on off-the-shelf tools. Our work builds on

these studies by demonstrating practical DoS/MITM exploits

with gatttool and Bettercap, and by adding a live Python-based

detector. In summary, the literature shows that BLE threats are

real and varied[2][5][6][7], but few works have combined

attack implementation with real-time defense, which this paper

addresses.

III. BLE ARCHITECTURE AND PROTOCOL STACK

The BLE protocol stack is split into a Controller and a Host.

Figure 1 illustrates the stack layers used in BLE devices. The

Physical Layer (PHY) is a 2.4 GHz GFSK radio (1 Mbps or

2 Mbps) operating in the ISM band[8]. Above this is the Link

Layer (LL), which governs BLE-specific functions:

advertising, scanning, initiating connections, and maintaining

the connected state[8][1]. The device roles are defined in the

Generic Access Profile (GAP): a device may act as a

broadcaster/observer (non-connectable) or peripheral/central

when connecting[8][1].

Fig. 1. BLE protocol stack

The Controller (bottom) includes the PHY and Link Layer (LL)

with the Host–Controller Interface (HCI). The Host (top)

includes GAP, GATT (Generic Attribute Profile), SMP

(Security Manager Protocol), ATT (Attribute Protocol), and

L2CAP (Logical Link Control and Adaptation Protocol). These

layers enable discovery, pairing, and data exchange. For

instance, L2CAP provides channel multiplexing and packet

fragmentation between ATT and the lower link layers[1]. The

Security Manager (SMP) handles pairing methods (Legacy or

Secure Connections), key distribution, authentication, and

encryption setup[1]. The ATT/GATT layers implement a

client–server attribute model: devices expose services

composed of characteristics, each identified by a UUID

handle[1][9]. GATT defines how these services/characteristics

are discovered, read, or written by the client.

 Vulnerabilities can appear at each layer. For example, the LL’s

advertising and scanning are susceptible to eavesdropping and

jamming (DoS) because they use fixed channels. SMP pairing

can be weakened by using the older “Just Works” mode (no

MITM protection) or broken if random number generation is

poor[3]. ATT/GATT layers typically do not authenticate clients

beyond the initial pairing, so an attacker on a bonded link may

still write unauthorized characteristics. Known vulnerabilities

(e.g. SweynTooth) exploit controller firmware bugs in LL/ATT

to crash the device[7]. In summary, BLE’s layered design

provides flexibility but also multiple attack surfaces.

Understanding these layers (Figure 1) is key to crafting exploits

and defenses in the subsequent sections.

IV. IMPLEMENTATION OF DOS ATTACK

We implemented a BLE DoS attack on Attify OS using the

Linux gatttool utility (from BlueZ). The target device was an

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE NO: 767

ESP32 running a simple GATT peripheral service. The attack

script repeatedly writes to a GATT characteristic to overload

the device. The procedure is as follows:

1. Scan for target: Use hcitool or bluetoothctl scan

on to discover the ESP32’s MAC address.

2. Connect with gatttool: Launch sudo gatttool -b

<MAC> -I for interactive mode, and execute connect.

3. Flood commands: In a loop, send a write or read

request to a valid attribute handle.

The payload is arbitrary. We automate this in Bash.

4. Observe impact: While running the script, we

monitor the target’s behavior (via its console output)

and the attacker CPU usage (top). In our tests, the

ESP32’s GATT server became unresponsive after ~50

iterations, and its CPU usage spiked (~80%). The

attacker CPU rose briefly due to constant BLE I/O.

Repeating the experiment showed that prolonged

flooding caused the ESP32 to reboot (CRP source

log: Stack overflow or hard fault).

Output Observation: The gatttool interactive log showed

successive “Connection successful” and occasional “Timeout”

errors after the target locked up.

The final error indicates the BLE service became unavailable.

The device required a restart to recover. This confirms that

unsophisticated DoS floods can crash BLE IoT devices.

Fig. 2. Perform DoS attack

V. IMPLEMENTATION OF MITM ATTACK

For the MITM-like exploit, we used the Bettercap framework

with its Bluetooth LE module. Bettercap runs on Attify OS

(Ubuntu 18.04-based) and supports BLE device enumeration

and characteristic injection[10]. The steps were:

• Start BLE scanning: In bettercap’s interactive

console (sudo bettercap -eval "ble.recon on"),

the ble.recon on command begins passive scanning.

We then used ble.show to list discovered devices with

their MAC addresses, names, and RSSI values.

• Select target and enumerate: We picked the ESP32

peripheral (MAC = AA:BB:CC:DD:EE:FF).

Using ble.enum <MAC>, Bettercap connected and

listed all GATT services and characteristics of the

device (showing each characteristic’s UUID and

handle)[10]. For instance, Bettercap output included a

service with UUID 0000180f-0000-1000-8000-

00805f9b34fb (Battery Service) and

characteristic 00002a19-0000-1000-8000-

00805f9b34fb (Battery Level).

• Characteristic injection: We identified a writable

custom characteristic (UUID 0000fff1-0000-1000-

8000-00805f9b34fb). Using the ble.write command,

we sent new data to the target.

This caused the ESP32’s application to act as if it

received user input. For example, if the ESP32 were

controlling an LED, the injected value toggled the

LED or changed its color.

Observed Output: In Bettercap’s console, the

following was seen.

After this write, the target device’s state changed

accordingly (e.g. a status message “Settings updated:

DEADBEEF”). No error was reported, indicating

successful injection. This exercise demonstrates a

proxy-like MITM: even though we were not strictly

between two devices, we spoofed characteristic data to

the peripheral. BLE UUIDs accessed (Battery Level

and custom 0xFFF1) confirm we can enumerate and

modify services without pairing (on this example

device). Bettercap automates the GATT connection

and write, simplifying the attack[10].

Figure 3 (below) illustrates the MITM workflow:

Bettercap scans (Step 1), enumerates services on the

target (Step 2), and injects a write command into a

writable characteristic (Step 3). The wireless logs

confirm that the ESP32 received the spoofed data. (No

pairing or user confirmation was needed, as our test

service did not enforce MITM protection.) This shows

that an attacker with BLE range and tools can

arbitrarily change a BLE device’s state, highlighting

the importance of secure pairing and whitelist checks.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE NO: 768

Fig. 3. Perform MITM attack

VI. BLE SECURE MONITOR TOOL

To detect such attacks in real time, we developed a BLE

monitor in Python using the bluepy library. The monitor

performs active scanning, applies a whitelist of known devices,

and generates alerts on anomalies.

Fig. 4. BLE monitor

This code sets up a scanner with a delegate callback. On each

new device discovered, handleDiscovery checks if the device’s

MAC (dev.addr) is in the WHITELIST. If not, it prints an alert

message (and could trigger logs or network notifications).

The run_monitor function loops with a configurable scan

interval (default 5 s). In tests, our whitelist contained the

ESP32’s MAC and another BLE sensor; when we launched an

unknown BLE beacon, the monitor immediately logged an alert

with its MAC and RSSI. The use of bluepy’s Scanner class

and DefaultDelegate is drawn from official documentation[11].

This simple monitor architecture can be extended with features

like alert throttling or logging to a file. The memory footprint

of this script on AttifyOS is minimal (tens of MB) and CPU

usage remains near idle except during scanning bursts.

In summary, the BLE monitor successfully distinguishes

known devices from outsiders. It can detect both passive

reconnaissance (new device advertising) and active MITM

attempts if the attacker advertises or connects under a non-

whitelisted MAC. By running continuously, it provides an

additional security layer on top of BLE’s built-in pairing.

VII. EXPERIMENTAL SETUP AND EVALUATION

Hardware and Software: We evaluated attacks on an ESP32

DevKitC running a sample BLE GATT service (with custom

characteristic 0xFFF1) as the victim device. The attacker was

a Raspberry Pi 4 (4 GB RAM) with AttifyOS (Ubuntu

18.04)[3], using a generic Bluetooth 4.0 USB dongle (CSR

chipset). AttifyOS includes gatttool, Bettercap 2.32, Python

3.7, and the bluepy library by default[3][10]. The BLE monitor

was implemented in Python 3.7 on this same host. Table 1 lists

the key components of our testbed.

TABLE I. EXPERIMENTAL SETUP COMPONENTS.

Hardware/Software Specification/Role

ESP32 DevKitC BLE peripheral (custom GATT

service with char 0xFFF1)

Raspberry Pi 4 Attacker/monitor host, AttifyOS

(Ubuntu 18.04)

USB BLE Dongle Bluetooth 4.0 adapter for Pi

Bettercap 2.32 with BLE module for scanning

& injection

gatttool (BlueZ) CLI tool for BLE read/write (pre-

installed)

Python 3 (bluepy) BLE scanning library (v1.3.0)

Evaluation Metrics: For attacks, we measured attack duration,

CPU and memory usage on both target and attacker. For the

monitor, we measured detection accuracy (true positives), false

positive rate, latency (time to detect an unauthorized device),

and resource use. We ran each attack three times and report

averaged values.

DoS vs. MITM Resource Usage: Table 2 summarizes key

metrics. The DoS script (executing 100 write-read iterations)

ran for ~45 s on average before the ESP32 stalled. The MITM

sequence (scanning and a single write) took ~10 s. Attacker

CPU usage peaked at ~85% during the DoS flood (multiple

threads/packets) versus ~40% for the MITM task. The ESP32

target’s CPU jumped to ~75% under DoS and ~50% during the

single write; memory usage was constant. On the host Pi, the

monitor script used ~5% CPU and 30 MB RAM during

scanning. The monitor’s alert latency was within 0.5 s of

detecting a new BLE advertisement. Overall, the DoS

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE NO: 769

consumed more attacker resources and time, but caused more

severe target disruption.

TABLE II. ATTACK PERFORMANCE METRICS

METRIC DOS ATTACK MITM ATTACK

DURATION (S) 45 ± 5 10 ± 1

HOST CPU PEAK (%) 85 ± 3 40 ± 2

HOST MEM. (MB) 50 35

TARGET CPU PEAK (%) 75 ± 5 50 ± 4

TARGET MEM. (MB) 30 30

Host = Raspberry Pi. ESP32 target usage measured via serial

log.

Monitor Performance: In a mixed test (50 known-device

scans, 50 intruder scans), the Python monitor detected all 50

unauthorized devices (100% recall) and generated zero false

alerts for trusted devices. Detection accuracy was 100%, false

positive rate 0%. Latency from first advertisement to alert

printout averaged 0.3 s (scan interval 0.5 s). CPU usage during

monitoring stayed under 7%. These results indicate the monitor

reliably raises alerts with minimal overhead.

VIII. RESULTS AND DISCUSSION

The experiments highlight the contrasting effects of DoS and

MITM on BLE devices. The DoS flood (Figure 3) caused

complete service disruption: the ESP32’s GATT server crashed

after sustained writes, requiring a reboot. CPU utilization

graphs (from syslogs) show the device’s processor pegged at

~75% during the flood, confirming high resource strain. In

contrast, the MITM write was quick and did not crash the

device; it simply altered the ESP32’s state (e.g., changing a

setting) and disconnected. The comparative data in Table 2

show the DoS attack took ~4× longer and spiked host CPU

much higher, whereas the MITM was brief. These metrics

suggest that an attacker with limited time might prefer targeted

writes (MITM-style) if the goal is data manipulation, while a

DoS flood maximizes disruption at the cost of resources.

Our BLE monitor effectively distinguished legitimate and

rogue activity. In tests, it triggered alerts whenever a non-

whitelisted device initiated advertising or tried to connect. For

example, when we ran Bettercap’s ble.enum on an attacker

laptop (MAC not in whitelist), the monitor printed an alert

immediately. This real-time detection could help network

defenders flag suspicious BLE behavior. Of course, an

adversary could attempt MAC spoofing or whitelisting attacks;

however, combining BLE monitoring with other signals (e.g.

location or usage patterns) can mitigate that. The monitor’s

metrics (accuracy, low false positives, modest CPU use) are

promising. Integrating such a monitor into a larger intrusion

detection system (IDS) would provide a proactive layer of

defense.

In summary, both attacks posed significant threats: the DoS

can completely disable a BLE device, while the

MITM/injection can manipulate device functions under the

radar. Our results underscore that even basic tools (gatttool,

Bettercap) are sufficient to exploit BLE. The proposed Python

monitor demonstrates that countermeasures are feasible on

cheap hardware (Raspberry Pi). Combined with best practices

(secure pairing, rolling identifiers, firmware patches), this

layered defense can substantially reduce risk.

IX. LIMITATIONS AND FUTURE WORK

Our study has limitations. The BLE monitor currently only logs

to console; a production system would need robust logging,

notification (e.g. email/SMS alerts), and possibly automated

responses (e.g. disconnecting or blacklisting a malicious

device). Our whitelist approach is static; future work could

include dynamic learning or integration with an IDS to correlate

BLE events with other network anomalies. We also focused on

BLE 4.x; Bluetooth 5.x introduces new features (longer range,

higher throughput, extended advertisements) whose security

implications are not covered here. Additional research is

needed to monitor BLE 5.x capabilities and mesh networks.

Finally, we evaluated only one hardware platform (ESP32) and

may not have hit all possible flaws. Testing on diverse BLE

chipsets (Nordic, TI, etc.) would reveal more about vendor-

specific vulnerabilities (as seen in SweynToothcisa.gov).

Enhancing our DoS script with L2CAP-level flooding or

adaptive timing is another avenue, as is extending the monitor

to detect jamming or protocol-level fuzzing. Despite these gaps,

our work provides a foundation for BLE security analysis and

shows that real-time monitoring is a practical and necessary

addition to BLE defense.

X. CONCLUSION

This paper presented a thorough examination of BLE security

in an IoT context. We reviewed BLE architecture and known

threats, implemented practical DoS and MITM attacks on an

ESP32 target, and built a real-time BLE intrusion monitor on

AttifyOS. Our experiments showed that simple scripts and tools

can force BLE devices offline or deceive them into accepting

spoofed data, confirming the need for vigilance. The Python

monitor demonstrated that detecting unauthorized BLE

behavior is feasible with minimal hardware. The comparative

results emphasize that defending BLE requires a multi-layered

approach: secure protocol configurations (e.g. authenticated

pairing, encryption), host-based monitoring (like our scanner),

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE NO: 770

https://www.cisa.gov/news-events/ics-alerts/ics-alert-20-063-01#:~:text=The%20vulnerability%20family%20titled%20SweynTooth,Semiconductors%2C%20Cypress%2C%20Dialog%20Semiconductors%2C%20Microchip

and rapid patching of known vulnerabilities. As BLE

proliferates into critical applications (healthcare, smart

infrastructure), such layered defenses will be vital. In

conclusion, we recommend that IoT practitioners enforce

stricter BLE security (e.g. whitelist enforcement, intrusion

alerts) and that future BLE versions continue to strengthen

pairing and privacy protections.

REFERENCES

[1] M. Cäsar et al., “A survey on Bluetooth Low Energy security and

privacy,” Computer Networks, vol. 205, 108712, Jan. 2022.

[2] G. Bello and A. J. Perez, “On the security of Bluetooth Low Energy in
two consumer wearable heart rate monitors,” Sensors, vol. 22, no. 6,
2158, 2022.

[3] J. Wu et al., “BLESA: Spoofing Attacks against Reconnections in
Bluetooth Low Energy,” in Proceedings of the 14th USENIX Workshop
on Offensive Technologies (WOOT), 2020.

[4] A. C. T. Santos et al., “BLE Injection-Free Attack: A Novel Attack on
Bluetooth Low Energy Devices,” Journal of AI and HCI (accepted 2019).

[5] M. Stute et al., “Disrupting Continuity of Apple’s Wireless Ecosystem
Security: New Tracking, DoS, and MitM Attacks on iOS and macOS
through BLE, AWDL, and Wi-Fi,” in Proc. 30th USENIX Security
Symposium, Aug. 2021.

[6] CISA, “SweynTooth: Bluetooth Low Energy Vulnerabilities” (ICS-
ALERT-20-063-01), Sep. 2020.

[7] A. Attify, “The Practical Guide to Hacking Bluetooth Low
Energy,” Attify Blog, Oct. 2018. [Online].
Available: https://blog.attify.com/the-practical-guide-to-hacking-
bluetooth-low-energy/

[8] Bettercap Project, “Bluetooth LE module,” Bettercap Documentation.
[Online]. Available: https://www.bettercap.org/modules/ble/

[9] Texas Instruments, “Bluetooth low energy Protocol Stack,” SimpleLink
CC2640R2 SDK, pp. 177–186, 2017.

[10] E. Reyes et al., “Understanding the Architecture of the Bluetooth Low
Energy Stack,” Analog Devices Technical Article, Dec. 2024.

[11] Attify, “AttifyOS – Distro to assess the security of IoT devices,” (web
page), [Online]. Available: https://www.attify.com/attifyos

[12] I. Harvey, “bluepy: Python interface to Bluetooth LE on Linux,” v.0.9.11,
GitHub. [Online]. Available: https://ianharvey.github.io/bluepy-
doc/scanner.html

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 34 ISSUE 12 2024

PAGE NO: 771

https://blog.attify.com/the-practical-guide-to-hacking-bluetooth-low-energy/
https://blog.attify.com/the-practical-guide-to-hacking-bluetooth-low-energy/
https://www.bettercap.org/modules/ble/
https://www.attify.com/attifyos
https://ianharvey.github.io/bluepy-doc/scanner.html
https://ianharvey.github.io/bluepy-doc/scanner.html

