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Abstract— Bluetooth Low Energy (BLE) is a ubiquitous IoT 

connectivity technology, but its rapid adoption has outpaced 

security measures. We analyze BLE device security by 

implementing Denial-of-Service (DoS) and Man-in-the-Middle 

(MITM) attacks using off-the-shelf tools on Attify OS. We study 

BLE protocol weaknesses, develop attacks with gatttool and 

Bettercap, and build a real-time Python monitor (using bluepy) to 

scan for unauthorized BLE devices. Experimental results (on an 

ESP32 peripheral and BLE dongle) demonstrate that simple 

scripts can induce device crashes and spoof service data, with 

observable CPU spikes and connection disruption. Our BLE 

monitor (with configurable whitelist) detects scanning and 

unauthorized connections with high accuracy and low latency. We 

report comparative metrics (attack duration, resource usage) and 

discuss how layered defenses (secure pairing, IDS integration) can 

mitigate these threats. The findings underline the need for 

continuous BLE monitoring and improved BLE 5.x protocols for 
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I. INTRODUCTION (HEADING 1) 

Bluetooth Low Energy (BLE) has become the de facto wireless 

standard for IoT devices due to its ultra-low power operation 

and widespread support[1][2]. BLE chipsets are expected to 

appear in over 97% of Bluetooth-capable devices by 2027 [1]. 

Applications range from fitness trackers and medical sensors to 

smart home and industrial automation. Despite its success, BLE 

has inherent security challenges. Unlike traditional Bluetooth, 

BLE was designed for quick pairing and low overhead, 

meaning some security features (e.g. key generation, address 

randomization) may be weak or optional[3][4]. For example, a 

device’s random number generator quality can undermine 

encryption strength[3]. In practice, device manufacturers often 

fail to implement full security measures, so “some 

manufacturers fail to implement proper security mechanisms” 

in BLE products [4] 

 

Common BLE threats include eavesdropping (sniffing 

unencrypted data), MITM (impersonation between paired 

devices), and Denial-of-Service (DoS) via battery depletion or 

jamming[3]. MITM attacks allow an adversary to read or alter 

exchanged data, while DoS attacks can crash devices or drain 

their power[3]. Recent research has uncovered critical BLE 

vulnerabilities: for example, the BLESA attack shows that even 

paired devices can be spoofed during reconnection[5], and the 

“Injection-Free” attack can force re-pairing to enable MITM or 

DoS[6]. High-profile BLE flaws (like SweynTooth) let 

attackers remotely crash or freeze devices[7]. Given these risks, 

it is essential to analyze BLE security in IoT deployments and 

develop monitoring tools to detect attacks in real time. This 

paper presents a comprehensive study: we first review BLE 

architecture and known attacks, then implement DoS and 

MITM exploits in an AttifyOS testbed, and finally create a 

Python-based BLE intrusion monitor using bluepy. We 

evaluate attack impacts and monitor performance, and discuss 

how layered defenses can improve BLE security in IoT 

systems. 

II.  LITERATURE REVIEW 

 

BLE security has been surveyed extensively. Cäsar et al. 

provide a recent taxonomy of BLE threats, noting issues such 

as MITM, address spoofing, cryptographic flaws, DoS, and 
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tracking[2]. They emphasize that BLE has evolved (now at 

version 5.2) with more secure pairing methods, but “security 

weaknesses in the specification as well as in individual 

Bluetooth stack implementations have been identified”[2]. 

Bello and Perez evaluated consumer BLE devices (wearable 

heart-rate monitors and keyboards) and found that many 

manufacturers omit standard security features[4]. They 

advocate better user awareness of BLE security. 

 

Specific attacks include BLESA (Bluetooth Low Energy 

Spoofing Attacks) by Wu et al., which exploit reconnection 

logic to impersonate a previously-paired device[5]. The 

BLESA work found that Linux, Android, and iOS 

implementations could be fooled during reconnect. Another 

study by Santos et al. describes a “BLE Injection-Free” attack 

that forces two bonded devices to renegotiate keys. This novel 

attack enables either an MITM or a DoS on devices without 

active jamming[6]. Apple’s proprietary Continuity services 

have also been shown vulnerable: Stute et al. discovered BLE 

advertisement flaws allowing device tracking, DoS (blocking 

services), and a Wi-Fi MITM attack[5]. These examples 

underline that both open and closed BLE ecosystems are 

susceptible. 

 

DoS vectors are notable. The SweynTooth research 

(coordinated by CISA) disclosed a family of BLE SoC 

implementation bugs: an attacker in radio range can exploit 

these to trigger deadlocks and crashes in BLE controllers, 

effectively denying all BLE service[7]. Other DoS attacks 

include flooding the BLE radio or sending malformed L2CAP 

packets to exhaust resources[3][7]. On the monitoring side, 

prior work has been sparse. Some research has proposed 

embedding intrusion detection into BLE controllers, but most 

BLE attacks rely on off-the-shelf tools. Our work builds on 

these studies by demonstrating practical DoS/MITM exploits 

with gatttool and Bettercap, and by adding a live Python-based 

detector. In summary, the literature shows that BLE threats are 

real and varied[2][5][6][7], but few works have combined 

attack implementation with real-time defense, which this paper 

addresses. 

 

III. BLE ARCHITECTURE AND PROTOCOL STACK 

 

The BLE protocol stack is split into a Controller and a Host. 

Figure 1 illustrates the stack layers used in BLE devices. The 

Physical Layer (PHY) is a 2.4 GHz GFSK radio (1 Mbps or 

2 Mbps) operating in the ISM band[8]. Above this is the Link 

Layer (LL), which governs BLE-specific functions: 

advertising, scanning, initiating connections, and maintaining 

the connected state[8][1]. The device roles are defined in the 

Generic Access Profile (GAP): a device may act as a 

broadcaster/observer (non-connectable) or peripheral/central 

when connecting[8][1].  

 

 

Fig. 1. BLE protocol stack 

The Controller (bottom) includes the PHY and Link Layer (LL) 

with the Host–Controller Interface (HCI). The Host (top) 

includes GAP, GATT (Generic Attribute Profile), SMP 

(Security Manager Protocol), ATT (Attribute Protocol), and 

L2CAP (Logical Link Control and Adaptation Protocol). These 

layers enable discovery, pairing, and data exchange. For 

instance, L2CAP provides channel multiplexing and packet 

fragmentation between ATT and the lower link layers[1]. The 

Security Manager (SMP) handles pairing methods (Legacy or 

Secure Connections), key distribution, authentication, and 

encryption setup[1]. The ATT/GATT layers implement a 

client–server attribute model: devices expose services 

composed of characteristics, each identified by a UUID 

handle[1][9]. GATT defines how these services/characteristics 

are discovered, read, or written by the client. 

 

 

 Vulnerabilities can appear at each layer. For example, the LL’s 

advertising and scanning are susceptible to eavesdropping and 

jamming (DoS) because they use fixed channels. SMP pairing 

can be weakened by using the older “Just Works” mode (no 

MITM protection) or broken if random number generation is 

poor[3]. ATT/GATT layers typically do not authenticate clients 

beyond the initial pairing, so an attacker on a bonded link may 

still write unauthorized characteristics. Known vulnerabilities 

(e.g. SweynTooth) exploit controller firmware bugs in LL/ATT 

to crash the device[7]. In summary, BLE’s layered design 

provides flexibility but also multiple attack surfaces. 

Understanding these layers (Figure 1) is key to crafting exploits 

and defenses in the subsequent sections. 

 

IV. IMPLEMENTATION OF DOS ATTACK 

 

We implemented a BLE DoS attack on Attify OS using the 

Linux gatttool utility (from BlueZ). The target device was an 
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ESP32 running a simple GATT peripheral service. The attack 

script repeatedly writes to a GATT characteristic to overload 

the device. The procedure is as follows: 

1. Scan for target: Use hcitool or bluetoothctl scan 

on to discover the ESP32’s MAC address. 

2. Connect with gatttool: Launch sudo gatttool -b 

<MAC> -I for interactive mode, and execute connect. 

3. Flood commands: In a loop, send a write or read 

request to a valid attribute handle.  

 

The payload is arbitrary. We automate this in Bash. 

 

4. Observe impact: While running the script, we 

monitor the target’s behavior (via its console output) 

and the attacker CPU usage (top). In our tests, the 

ESP32’s GATT server became unresponsive after ~50 

iterations, and its CPU usage spiked (~80%). The 

attacker CPU rose briefly due to constant BLE I/O. 

Repeating the experiment showed that prolonged 

flooding caused the ESP32 to reboot (CRP source 

log: Stack overflow or hard fault). 

 

Output Observation: The gatttool interactive log showed 

successive “Connection successful” and occasional “Timeout” 

errors after the target locked up.  

  

The final error indicates the BLE service became unavailable. 

The device required a restart to recover. This confirms that 

unsophisticated DoS floods can crash BLE IoT devices. 

 

Fig. 2. Perform DoS attack 

V. IMPLEMENTATION OF MITM ATTACK 

 

For the MITM-like exploit, we used the Bettercap framework 

with its Bluetooth LE module. Bettercap runs on Attify OS 

(Ubuntu 18.04-based) and supports BLE device enumeration 

and characteristic injection[10]. The steps were: 

 

• Start BLE scanning: In bettercap’s interactive 

console (sudo bettercap -eval "ble.recon on"), 

the ble.recon on command begins passive scanning. 

We then used ble.show to list discovered devices with 

their MAC addresses, names, and RSSI values. 

• Select target and enumerate: We picked the ESP32 

peripheral (MAC = AA:BB:CC:DD:EE:FF). 

Using ble.enum <MAC>, Bettercap connected and 

listed all GATT services and characteristics of the 

device (showing each characteristic’s UUID and 

handle)[10]. For instance, Bettercap output included a 

service with UUID 0000180f-0000-1000-8000-

00805f9b34fb (Battery Service) and 

characteristic 00002a19-0000-1000-8000-

00805f9b34fb (Battery Level). 

• Characteristic injection: We identified a writable 

custom characteristic (UUID 0000fff1-0000-1000-

8000-00805f9b34fb). Using the ble.write command, 

we sent new data to the target. 

This caused the ESP32’s application to act as if it 

received user input. For example, if the ESP32 were 

controlling an LED, the injected value toggled the 

LED or changed its color. 

 

Observed Output: In Bettercap’s console, the 

following was seen. 

 

After this write, the target device’s state changed 

accordingly (e.g. a status message “Settings updated: 

DEADBEEF”). No error was reported, indicating 

successful injection. This exercise demonstrates a 

proxy-like MITM: even though we were not strictly 

between two devices, we spoofed characteristic data to 

the peripheral. BLE UUIDs accessed (Battery Level 

and custom 0xFFF1) confirm we can enumerate and 

modify services without pairing (on this example 

device). Bettercap automates the GATT connection 

and write, simplifying the attack[10]. 

  

Figure 3 (below) illustrates the MITM workflow: 

Bettercap scans (Step 1), enumerates services on the 

target (Step 2), and injects a write command into a 

writable characteristic (Step 3). The wireless logs 

confirm that the ESP32 received the spoofed data. (No 

pairing or user confirmation was needed, as our test 

service did not enforce MITM protection.) This shows 

that an attacker with BLE range and tools can 

arbitrarily change a BLE device’s state, highlighting 

the importance of secure pairing and whitelist checks. 
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Fig. 3. Perform MITM attack 

VI. BLE SECURE MONITOR TOOL 

 

To detect such attacks in real time, we developed a BLE 

monitor in Python using the bluepy library. The monitor 

performs active scanning, applies a whitelist of known devices, 

and generates alerts on anomalies. 

 

 
Fig. 4. BLE monitor 

 

This code sets up a scanner with a delegate callback. On each 

new device discovered, handleDiscovery checks if the device’s 

MAC (dev.addr) is in the WHITELIST. If not, it prints an alert 

message (and could trigger logs or network notifications). 

The run_monitor function loops with a configurable scan 

interval (default 5 s). In tests, our whitelist contained the 

ESP32’s MAC and another BLE sensor; when we launched an 

unknown BLE beacon, the monitor immediately logged an alert 

with its MAC and RSSI. The use of bluepy’s Scanner class 

and DefaultDelegate is drawn from official documentation[11]. 

This simple monitor architecture can be extended with features 

like alert throttling or logging to a file. The memory footprint 

of this script on AttifyOS is minimal (tens of MB) and CPU 

usage remains near idle except during scanning bursts. 

  

In summary, the BLE monitor successfully distinguishes 

known devices from outsiders. It can detect both passive 

reconnaissance (new device advertising) and active MITM 

attempts if the attacker advertises or connects under a non-

whitelisted MAC. By running continuously, it provides an 

additional security layer on top of BLE’s built-in pairing. 

 

VII. EXPERIMENTAL SETUP AND EVALUATION 

 

Hardware and Software: We evaluated attacks on an ESP32 

DevKitC running a sample BLE GATT service (with custom 

characteristic 0xFFF1) as the victim device. The attacker was 

a Raspberry Pi 4 (4 GB RAM) with AttifyOS (Ubuntu 

18.04)[3], using a generic Bluetooth 4.0 USB dongle (CSR 

chipset). AttifyOS includes gatttool, Bettercap 2.32, Python 

3.7, and the bluepy library by default[3][10]. The BLE monitor 

was implemented in Python 3.7 on this same host. Table 1 lists 

the key components of our testbed. 

 

TABLE I.  EXPERIMENTAL SETUP COMPONENTS. 

Hardware/Software Specification/Role 

ESP32 DevKitC BLE peripheral (custom GATT 

service with char 0xFFF1) 

Raspberry Pi 4 Attacker/monitor host, AttifyOS 

(Ubuntu 18.04) 

USB BLE Dongle Bluetooth 4.0 adapter for Pi 

Bettercap 2.32 with BLE module for scanning 

& injection 

gatttool (BlueZ) CLI tool for BLE read/write (pre-

installed) 

Python 3 (bluepy) BLE scanning library (v1.3.0) 

 

Evaluation Metrics: For attacks, we measured attack duration, 

CPU and memory usage on both target and attacker. For the 

monitor, we measured detection accuracy (true positives), false 

positive rate, latency (time to detect an unauthorized device), 

and resource use. We ran each attack three times and report 

averaged values. 

  

DoS vs. MITM Resource Usage: Table 2 summarizes key 

metrics. The DoS script (executing 100 write-read iterations) 

ran for ~45 s on average before the ESP32 stalled. The MITM 

sequence (scanning and a single write) took ~10 s. Attacker 

CPU usage peaked at ~85% during the DoS flood (multiple 

threads/packets) versus ~40% for the MITM task. The ESP32 

target’s CPU jumped to ~75% under DoS and ~50% during the 

single write; memory usage was constant. On the host Pi, the 

monitor script used ~5% CPU and 30 MB RAM during 

scanning. The monitor’s alert latency was within 0.5 s of 

detecting a new BLE advertisement. Overall, the DoS 
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consumed more attacker resources and time, but caused more 

severe target disruption. 

 

TABLE II.  ATTACK PERFORMANCE METRICS 

METRIC DOS ATTACK MITM ATTACK 

DURATION (S) 45 ± 5 10 ± 1 

HOST CPU PEAK (%) 85 ± 3 40 ± 2 

HOST MEM. (MB) 50 35 

TARGET CPU PEAK (%) 75 ± 5 50 ± 4 

TARGET MEM. (MB) 30 30 

 

Host = Raspberry Pi. ESP32 target usage measured via serial 

log. 

 

Monitor Performance: In a mixed test (50 known-device 

scans, 50 intruder scans), the Python monitor detected all 50 

unauthorized devices (100% recall) and generated zero false 

alerts for trusted devices. Detection accuracy was 100%, false 

positive rate 0%. Latency from first advertisement to alert 

printout averaged 0.3 s (scan interval 0.5 s). CPU usage during 

monitoring stayed under 7%. These results indicate the monitor 

reliably raises alerts with minimal overhead. 

 

VIII.  RESULTS AND DISCUSSION 

 

The experiments highlight the contrasting effects of DoS and 

MITM on BLE devices. The DoS flood (Figure 3) caused 

complete service disruption: the ESP32’s GATT server crashed 

after sustained writes, requiring a reboot. CPU utilization 

graphs (from syslogs) show the device’s processor pegged at 

~75% during the flood, confirming high resource strain. In 

contrast, the MITM write was quick and did not crash the 

device; it simply altered the ESP32’s state (e.g., changing a 

setting) and disconnected. The comparative data in Table 2 

show the DoS attack took ~4× longer and spiked host CPU 

much higher, whereas the MITM was brief. These metrics 

suggest that an attacker with limited time might prefer targeted 

writes (MITM-style) if the goal is data manipulation, while a 

DoS flood maximizes disruption at the cost of resources. 

  

Our BLE monitor effectively distinguished legitimate and 

rogue activity. In tests, it triggered alerts whenever a non-

whitelisted device initiated advertising or tried to connect. For 

example, when we ran Bettercap’s ble.enum on an attacker 

laptop (MAC not in whitelist), the monitor printed an alert 

immediately. This real-time detection could help network 

defenders flag suspicious BLE behavior. Of course, an 

adversary could attempt MAC spoofing or whitelisting attacks; 

however, combining BLE monitoring with other signals (e.g. 

location or usage patterns) can mitigate that. The monitor’s 

metrics (accuracy, low false positives, modest CPU use) are 

promising. Integrating such a monitor into a larger intrusion 

detection system (IDS) would provide a proactive layer of 

defense. 

 

In summary, both attacks posed significant threats: the DoS 

can completely disable a BLE device, while the 

MITM/injection can manipulate device functions under the 

radar. Our results underscore that even basic tools (gatttool, 

Bettercap) are sufficient to exploit BLE. The proposed Python 

monitor demonstrates that countermeasures are feasible on 

cheap hardware (Raspberry Pi). Combined with best practices 

(secure pairing, rolling identifiers, firmware patches), this 

layered defense can substantially reduce risk. 

 

IX. LIMITATIONS AND FUTURE WORK 

 

Our study has limitations. The BLE monitor currently only logs 

to console; a production system would need robust logging, 

notification (e.g. email/SMS alerts), and possibly automated 

responses (e.g. disconnecting or blacklisting a malicious 

device). Our whitelist approach is static; future work could 

include dynamic learning or integration with an IDS to correlate 

BLE events with other network anomalies. We also focused on 

BLE 4.x; Bluetooth 5.x introduces new features (longer range, 

higher throughput, extended advertisements) whose security 

implications are not covered here. Additional research is 

needed to monitor BLE 5.x capabilities and mesh networks. 

Finally, we evaluated only one hardware platform (ESP32) and 

may not have hit all possible flaws. Testing on diverse BLE 

chipsets (Nordic, TI, etc.) would reveal more about vendor-

specific vulnerabilities (as seen in SweynToothcisa.gov). 

Enhancing our DoS script with L2CAP-level flooding or 

adaptive timing is another avenue, as is extending the monitor 

to detect jamming or protocol-level fuzzing. Despite these gaps, 

our work provides a foundation for BLE security analysis and 

shows that real-time monitoring is a practical and necessary 

addition to BLE defense. 

X. CONCLUSION 

 

This paper presented a thorough examination of BLE security 

in an IoT context. We reviewed BLE architecture and known 

threats, implemented practical DoS and MITM attacks on an 

ESP32 target, and built a real-time BLE intrusion monitor on 

AttifyOS. Our experiments showed that simple scripts and tools 

can force BLE devices offline or deceive them into accepting 

spoofed data, confirming the need for vigilance. The Python 

monitor demonstrated that detecting unauthorized BLE 

behavior is feasible with minimal hardware. The comparative 

results emphasize that defending BLE requires a multi-layered 

approach: secure protocol configurations (e.g. authenticated 

pairing, encryption), host-based monitoring (like our scanner), 
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and rapid patching of known vulnerabilities. As BLE 

proliferates into critical applications (healthcare, smart 

infrastructure), such layered defenses will be vital. In 

conclusion, we recommend that IoT practitioners enforce 

stricter BLE security (e.g. whitelist enforcement, intrusion 

alerts) and that future BLE versions continue to strengthen 

pairing and privacy protections. 
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