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Abstract: 

A novel approach incorporating a modified Internal Model Control (IMC) framework with a Fractional-Order Tilt 

Double Derivative (FOTDD) controller is introduced specifically tailored for integrating processes by using Firefly 

Optimization Algorithm. This technique is expanded to encompass all three categories of process models: integrating 

with time delay (IPTD), double integrating with time delay (DIPTD), and integrating with first order and time delay 

(IFOPTD). The feedback controller is devised within an IMC framework, swiftly derived from the plant parameters. 

Subsequently, the fractional IMC filter can be adjusted using the explicit expressions obtained for practical 

convenience. A numerical analysis is carried out, examining various examples from existing literature across all 

integrating model types by using Firefly Optimization Algorithm (FOA) can be effectively utilized to solve 

optimization problems and enhance system performance across various domains. The outcomes are contrasted with 

existing methodologies concerning setpoint tracking, disturbance rejection, and parameter perturbations. Through 

the utilization of a fractional order IMC-TDD Controller for Integrating processes employing the Firefly 

Optimization Algorithm, the findings exhibit a straightforward and resilient structure with minimal tuning 

parameters, showcasing the system's performance are acquired through the utilization of the MATLAB/Simulink 

software. 

Keywords:  Fractional IMC filter, Integrating process, Double integrating process, Disturbance rejection, Tilt 

derivative, Firefly Optimization Algorithm (FOA).

  

1.Introduction:  

An integrating process is represented by a first-

order differential equation, indicating that the output of the 

process is the integral of its input. This leads to a steady-

state response that continues to increase or decrease 

indefinitely, depending on the sign of the input. 

Integrating processes are common in various systems, 

such as level control systems, where the output is the 

integral of the flow rate into or out of a tank, or in velocity 

control systems, where the output is the integral of the 

acceleration. Integrating processes pose challenges for 

control systems design, as they are inherently non-

minimum phase systems, meaning that their zeros are 

located in the right-half plane. This characteristic can lead 

to instability or poor performance if not properly 

addressed in the control system design. Specialized 

control strategies, such as the IMC-TDD controller 

mentioned earlier, are often employed to effectively 

control integrating processes.  

 

The Fractional order (IMC-TDD) Controller is 

a specialized control strategy designed to address the 

control challenges posed by integrating processes with 

time delays. It combines the concepts of fractional 

calculus, which allows for non-integer differentiation and 

integration orders, with the IMC-TDD framework, which 

is tailored for systems characterized by integrating 

dynamics and time delays.  

 

The FOA serves as a powerful optimization tool 

to fine-tuning the parameters of the Fractional order IMC-

TDD Controller. Inspired by the flashing behaviour of 

fireflies, the FOA efficiently explores the parameter space, 

seeking optimal solutions that minimize specified 

performance criteria. Integrating the FOA into the 

controller design process enhances its effectiveness in 

regulating integrating processes under diverse conditions.  

 

Designing an enhanced IMC-PID controller 

with a lead-lag filter to handle unstable and integrating 

processes with time delay [1]. Proposing an enhanced 

fractional filter-based fractional IMC-TDD controller 

design and analysis to elevate the performance of 

integrating processes [2]. Internal model-based fractional 

order controller for all methods of integrating process like 

fractional order plus time delay processes [3]. When 

designing controllers for integrating processes with time 

delay, it has been observed that they yield superior 

performance in oscillation, overshoot, and reduced 

settling time [4]. Improved IMC design for enhancing load 

disturbance rejection in integrating and unstable processes 

characterized by slow dynamics [5]. In contrast to 

inherently stable processes, integrating processes can 
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exhibit instability despite bounded inputs. Authors have 

devised multiple methods to effectively control such 

processes [6,7]. The approaches offered reduced 

overshoot and achieved faster settling times through 

appropriate selection of tuning parameters. The fractional 

order based IMC-TDD controller for integrating processes 

was devised based on user-defined tuning parameters 

[8,9]. The optimal 𝐻2 minimization framework was 

extended with IMC by Begum et al. [10]. 

 

This paper presents a comprehensive 

investigation of the Fractional Filter IMC-TDD Controller 

utilizing the FOA. Simulation results and Case studies are 

provided to illustrate the efficacy and robustness of the 

proposed approach in controlling integrating processes. 

 
 

 

Figure 1 Structure of IMC Controller

 

 
    
    

 

 

 

 

2. MODELLING: 

    

        An integrating process is a type of dynamic system 

that exhibits integral behavior, meaning that its output is 

proportional to the integral of its input over time. In 

mathematical terms, an integrating process can be 

described by a first-order differential equation with an 

integrating (or integrating action) term. This integral 

action allows the system to eliminate steady-state errors 

and achieve accurate tracking of reference signals or 

setpoints. This approach is expanded for below mentioned 

methods. 

      

   Type 1: Integrating plus time delay process: 
      

  The Integrating Plus Time Delay (IPTD) 

process model is a representation commonly used in 

process control and system dynamics. It describes 

dynamic systems that exhibit both integrating behavior 

(integral action) and time delay. In mathematical terms, 

the IPTD process model can be expressed as a transfer 

function: 

       

𝐺𝑝1(𝑠) = 
𝐾𝑒−𝜃𝑠

𝑠
                                     (1) 

 
K is the steady-state gain or process gain, representing the 

degree of integrating action. 𝜃 is the time delay parameter. 

s is the Laplace variable, representing the complex 

frequency domain. 

           

 

 

𝐺𝑝1(𝑠) = 
𝐾𝑒−𝜃𝑠

𝑠
 = 

𝐾𝑒−𝜃𝑠

𝑠+
1

𝛾

 = 
𝛾𝐾𝑒−𝜃𝑠

𝛾𝑠+1
 

 

Considering 𝛾 as a constant with a high value, let's assume 

𝛾 = 100. Now, by employing the FIMC as  

     f(s) = 
1

𝛾𝑠β +1
                            

 

Here, 𝜆 denotes a fractional filter time constant 

(𝜆 > 0), and 𝛽 is a positive real number, where 𝛽 ∈ (0,1) 

for all integrating plants. The novel FOTDD is introduced 

as: 

 

FOTDD = 𝐾𝑡
 1

𝑠
1
𝑛

+𝐾𝑑𝑠𝜇 + 𝐾𝑑𝑑𝑠𝜇1         (2) 

The given equations are compared with the 

FOTDD controller parameters In this case we get the 

formula for 𝐺𝑝1(𝑠) is: 

 

𝐾𝑡 =
1

𝛾𝑘
; 𝐾𝑑 =

1

𝐾
;  𝛽 =

1

𝑛
;  𝜇 = 1 − 𝛽 

 

It is evident for an IPTD process, In this context, 

where 𝐾𝑡 represents the tilted gain and 𝐾𝑑denotes the 

derivative gain, the double derivative is not necessary, 

thus 𝐾𝑑𝑑 = 0. Additionally, the definition of the new 

cascaded fractional filter is as follows: 

 

𝐹𝑓 =
1+0.5𝜃𝑠

λ+0.5θλs+θ𝑠1−𝛽
                                                  (3) 

 

Applications of IPTD models can be found in 

various real-world systems, including chemical processes, 

biological systems, and control systems with transport 

delays. Understanding and modeling the behavior of 

systems using the IPTD model is crucial for designing 

effective control strategies, predicting system responses, 

and tuning controllers to achieve desired performance. 

Control engineers often employ techniques such as PID 

(Proportional-Integral-Derivative) control to regulate 

systems described by IPTD models. 
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Type 2: Double Integrating plus time delay 

process: 

  

The Double Integrating Plus Time Delay 

Process (DIPTD) model incorporating two levels of 

integration along with a time delay. This model is used to 

represent systems with more complex dynamics, 

particularly those that exhibit higher-order integrative 

behaviour. In mathematical terms,  

 

𝐺𝑝2(𝑠) = 
𝐾𝑒−𝜃𝑠

𝑠2                                        (4) 

 

K is the steady-state gain or process gain. 𝜃 is the time 

delay parameter. s is the Laplace variable. These equations 

are compared with the FOTDD controller parameters. In 

this case we get the formula for 𝐺𝑝2(s) is: 

 

𝐾𝑡 =
1

𝛾2𝐾
;     𝐾𝑑 =

2

𝛾𝐾
;    𝐾𝑑𝑑 =

1

𝐾
;      𝛽 =

1

𝑛
;  

 

𝜇 = 1 − 𝛽;     𝜇1 = 2 − 𝛽 

 

DIPTD models are commonly encountered in 

systems with more complex dynamics, such as mechanical 

systems with inertia or second-order differential equations 

governing their behavior. Understanding and modeling 

these systems using DIPTD models are crucial for 

designing effective control strategies and predicting 

system responses accurately. Control engineers often 

employ advanced control techniques to regulate systems 

described by DIPTD models, ensuring stability and 

desired performance. 

 

Type 3: Integrating plus first order plus time 

delay process: 

 

The Integrating Plus First Order Plus Time 

Delay (IFOPTD) process model is another variation 

commonly used in process control and system dynamics. 

It combines an integrating element, a first-order element, 

and a time delay, making it more complex than the IPTD 

model. In mathematical terms, 

 

𝐺𝑝3(𝑠) =
𝐾𝑒−𝜃𝑠

𝑠(𝑠+1)
                                                (5) 

  

is the transfer function of the process. K is the 

steady-state gain. 𝜃 is time delay parameter. s is Laplace 

variable. These equations are compared with the FOTDD 

controller parameters. In this case we get the formula for 

𝐺𝑝3(s) is: 

 

𝐾𝑡 =
1

𝛾𝐾
;      𝐾𝑑 =

𝛾 + 1

𝛾𝐾
;     𝐾𝑑𝑑 =

1

𝐾
;       𝛽 =

1

𝑛
;  

 

𝜇 = 1 − 𝛽;     𝜇1 = 2 − 𝛽       

 

IFOPTD models are often used to represent 

systems with intermediate complexity, where both 

integrating and first-order dynamics play significant roles 

in system behavior. Understanding and modeling these 

systems using IFOPTD models are essential for designing 

effective control strategies and accurately predicting 

system responses to regulate systems described by 

IFOPTD models and achieve desired performance. 

 

Fractional order IMC-TDD Controller is 

designed for system for mentioned above models. The 

IMC (Internal Model Control) Tilt Double Derivative 

Controller is a type of advanced control strategy used in 

process control systems. It's a variation of the IMC 

controller, which is designed to provide robust 

performance in the presence of process disturbances and 

uncertainties. 

 

 Double derivative controller is an enhancement 

to the standard IMC controller. It adds an additional 

derivative action to the controller, which can improve the 

control system's response to sudden changes or 

disturbances in the process. The IMC-Tilt approach 

introduces a tilt parameter that allows tuning the controller 

to prioritize either disturbance rejection or setpoint 

tracking. By adjusting this parameter, the controller can be 

optimized for specific process requirements. Overall, the 

IMC-Tilt Double Derivative Controller is a sophisticated 

control strategy that offers flexibility and robust 

performance in various industrial applications. 

 

The below table shows the Disturbance filters 

applied to different process models. 

 

Process 𝑭𝒅 𝜓 

𝐾𝑒−𝜃𝑠

𝑠
 

𝑠(1 + 𝜃𝑠)

𝐾((ψs + 1)2
 

𝜃

2
 

𝐾𝑒−𝜃𝑠

𝑠2
 

𝑠2(1 + 𝜃𝑠)

𝐾(ψs + 1)3
 

0.02𝜃 

𝐾𝑒−𝜃𝑠

𝑠(𝑠 + 1)
 

𝑠(1 + 𝜃𝑠)(𝜏𝑠 + 1)

𝐾(ψs + 1)3
 

𝜃

(2 + 𝜏)
 

 

Table 1: Disturbance filters applied to different process 

models.
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A disturbance filter, in the context of signal processing or 

control systems, is a component designed to reduce or 

eliminate unwanted noise or disturbances from a signal. 

It's particularly useful in systems where external factors 

can introduce interference or disturbances that affect the  

 

 

desired output. In this paper we used state feedback 

control techniques can be employed to actively 

compensate for disturbances by adjusting control input 

based on the estimated system state and the detected 

disturbances. 

 

 

Subsequently, the fractional IMC filter can be 

adjusted based on the obtained explicit expressions below 

mentioned. Table 2 shows the Fractional IMC filter 

Tuning parameters for above process models. The IMC 

filter is a type of filter used in control systems for filtering 

signals. Fractional IMC filters offer advantages such as 

improved robustness to variations in system dynamics, 

better noise rejection, and the ability to capture non-linear 

Behavior more accurately

Summary of the tunning parameters: 

 

• Acquire 𝜆 and 𝛽 values from Table 2 corresponding to 

the process model. 

• Implement the fractional IMC filter as recommended in 

the second column of Table 2. 

• Configure the disturbance filter according to Table 1. 

• Compute the FOTDD parameters.

 

Table 2: Fractional IMC filter tunning parameters above 

Process model. 

 

Fractional IMC filter:  𝐹𝑓1 =
1+0.5𝜃𝑠

λ 𝑠0.8+0.5𝜃λ 𝑠1.8+𝜃𝑠1−𝛽
         

 

 

𝐹𝑓2 =
1+0.5𝜃𝑠

λ+0.5θλ s+𝜃𝑠1−𝛽                                                  (6) 

 

 

 

 

 

3. PROPOSED SYSTEM: 

 

In the proposed system, the Firefly Optimization 

Algorithm is harnessed to devise the Fractional order 

IMC-TDD Controller for System. This algorithm has 

found application in a multitude of optimization tasks, 

spanning function optimization, parameter adjustment, 

and engineering design optimization. 

 

In the optimization process facilitated by the 

Firefly Algorithm, the objective is to fine-tune the gains of 

the PID controller to ensure optimal control performance 

under nominal operating conditions. The Firefly 

Algorithm is employed to optimize the PID parameters 

𝐾𝑡, 𝐾𝑑 , 𝐾𝑑𝑑 using the algorithm and simulation. 

 

 

 

 

 

 

 

 

 

 

 

Proce

ss 

Fractio

nal 

filter 

𝜆 and 𝜷 

𝐾𝑒−𝜃𝑠

𝑠
 

 

𝜃 ≤ 2 

𝐹𝑓1 𝜆 = 
0.872𝜃2+0.644𝜃+0.101

𝜃2−0.729𝜃+1.549
 

 

𝛽

=
0.014𝜃3 + 0.095𝜃2 − 0.176𝜃 + 0.089

𝜃2 − 1.548 ∗ 𝜃 + 0.682
 

𝐾𝑒−𝜃𝑠

𝑠
 

 

𝜃 ≥2 

𝐹𝑓2 𝜆 = 0.006𝜃3 −

0.041𝜃2 + 0.118 𝜃 −

0.008 

 

𝛽 = 
−0.026𝜃2+0.367𝜃−0.266

𝜃−0.599
 

 
𝐾𝑒−𝜃𝑠

𝑠2
 

𝜃 ≤2 

𝐹𝑓1 𝜆 = 
0.557𝜃+0.056

𝜃2−1.484𝜃+2.709
 

 

𝛽  = 0.159𝑒−1.012𝜃 

𝐾𝑒−𝜃𝑠

𝑠2
 

𝜃 ≥2 

𝐹𝑓2 𝜆 = 0.042𝜃0.345 +

0.046 

 

𝛽  = -0.039𝜃0.572 +

0.16 

𝐾𝑒−𝜃𝑠

𝑠(𝑠 + 1)
 

 

𝜃 ≤2 

𝐹𝑓1 𝜆 = 0.288𝜃 + 0.016 

 

𝛽 = 
0.548𝜃+0.565

𝜃2−1.102𝜃+5.83
 

𝐾𝑒−𝜃𝑠

𝑠(𝑠 + 1)
 

 

𝜃 ≥2 

𝐹𝑓2 𝜆 = 0.005𝜃1.191 +

0.088 

 

𝛽  = 0.009𝜃 + 0.236 
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The below steps shows the algorithm of Firefly 

optimization algorithm. 

1. Fireflies are randomly initialized in the solution 

space. Every firefly symbolizes a potential solution to the 

optimization conundrum. 

2. The objective function is evaluated for each 

firefly, determining its brightness. The brightness is 

determined based on3. the quality of the solution; higher 

brightness indicates a better solution.  

3. Fireflies are attracted to brighter fireflies in the 

solution space. This attraction is influenced by two 

factors: the attractiveness of the brighter firefly and the 

distance between the fireflies. Fireflies move towards 

brighter ones with higher attractiveness and shorter 

distances.   

4. Fireflies update their positions based on the 

attractiveness and distance-dependent movement towards 

brighter fireflies. 

5. Steps 2 and 4 are repeated the process iterates 

until a termination. 

IMC-Tilt controllers is applied to process 

control applications such as temperature control, pressure 

control, flow control, and level control in industrial 

processes. FA can optimize the parameters of IMC-Tilt 

controllers to achieve desired setpoint tracking 

performance while maintaining stability and robustness 

against disturbances and uncertainties in the process. The 

Figure 2 shows the flowchart of firefly optimization 

algorithm. 

 

Figure 2: Flowchart of firefly optimization algorithm 

 

4. SIMULATION RESULTS 

To evaluate the efficacy for mentioned method, the 

performance of the closed loop is compared with 

alternative approaches. Simulation results shows the 

comparison of proposed and existing method. Here in 

proposed method we are using the firefly optimization 

algorithm for existing method. Simulation diagram, 

graphs and comparison table is shown below which shows 

the objective is to achieve no oscillations, minimal settling 

time with reduced overshoot, and minimum Integrated 

Absolute Error for both setpoint tracking and enhanced 

disturbance rejection compared to alternative methods. 

Key indicators such as overshoot (𝑂𝑣%), settling time (𝑡𝑠 

in seconds), and Integrated Absolute Error (IAE) are 

computed from the proposed technique and other 

methodologies.  

 

𝐼𝐴𝐸 =  ∫ |𝒚(𝒕) − 𝒓(𝒕)|
∞

𝟎
                                                (7) 

where 𝑦(𝑡) is output and 𝑟(𝑡) is setpoint signals. Overshoot 

indicates the extent to which surpasses the ultimate value 

after a step change in the setpoint, and it also reflects 
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undershoot resulting from disturbance inputs. Settling 

time, on the other hand, refers to the duration needed for 

the output to stabilize within a specified tolerance band. 

The below diagram shows the simulation diagram. 

 

Example 1: Integrating plus time delay system:  

𝐺𝑝1(𝑠) = 
𝑒−0.5𝑠

𝑠
 

 

 

Figure 3: Simulation diagram 

 

The below simulation diagram shows the proposed and 

existing diagram. We have compared the presented system 

with FOTDD parameters of equation 1. Subsequently, 

employing the outlined approach the derived values are 

𝐾𝑡= 0.01 and 𝐾𝑑= 1.0. The tuning parameters 𝜆 and 𝛽 are 

determined to be 0.45 and 0.17, respectively, aiming for 

maximum sensitivity. 

 

 
Figure 4: servo response 

 

Figure 5: Regulatory response 

The servo and regulatory performances are shown in Figs. 

4 and 5.  Regulatory response shows when the disturbance 

is applied for system. The findings suggest that it achieves 

zero oscillations, minimal settling time, reduced 

overshoot, and minimum IAE for setpoint tracking, along 

with improved disturbance rejection compared to 

alternative methods. 

 

 

Contr

ol 

Meth

od 

Set Point Disturbance 

 %Overs

hoot 

Ts IA

E 

%Overs

hoot 

Ts IA

E 

Propo

sed 

0 2.0

42 

0.5

36 

0 2.0

42 

0.0

93 

IMC 

TDD 

0.505 5.7

71 

0.9

56 

0.505 5.7

71 

0.1

51 

 

Table 3: Comparison Table 

 

 

The above table shows the comparison of IMC-

TDD and proposed system of example 1. Here we are 

comparing the overshoot, setting time and IAE. In The 

above table shows the comparison of IMC-TDD and 

proposed system of example 1. Here we are comparing the 

overshoot, setting time and IAE. In proposed system we 

are using Firefly optimization algorithm for existing 

system. The table shows that less overshoot, less settling 

time, less IAE for both setpoint and disturbance methods. 

 

 

 

Example 2: Double integrating plus time delay system 

 

𝐺𝑝2(𝑠) = 
𝑒−𝑠

𝑠2
     

 

We have compared the presented system with FOTDD 

parameters of equation 1. The controller settings 𝑀𝑠=1.5 

is considered here, the parameters are 𝜆=1.1 and 𝛽=0.25 

and controller values are 𝐾𝑡=0.0001, 𝐾𝑑=0.02, 𝐾𝑑𝑑=1. 

The parameters were also computed for the case without 

setpoint filter, resulting 𝜆=0.9 and 𝛽=0.05. The 

corresponding servo and regulatory responses for 𝑀𝑠=1.5 

both with and without filter is shown in Fig.6. 
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Figure 6: Servo and regulatory response 

 

The servo and regulatory performances are shown in 

Figure 6 respectively. Regulatory response shows when 

the disturbance is applied for system. The performance of 

the system has zero oscillations, minimal settling time, 

reduced demonstrate overshoot, and minimum Integrated 

Absolute Error for setpoint tracking, along with superior 

disturbance rejection. 

 

Contr

ol 

Meth

od 

Set Point Disturbance 

 %Over

shoot 

Ts IA

E 

%Over

shoot 

Ts IA

E 

Prop

osed 

1.865 8.6

24 

0.1

81 

4.9 9.5

7 

0.0

52 

IMC 

TDD 

2.648 12.

895 

0.2

30 

5.7 12.

86 

0.0

75 

 

Table 4: Comparison Table 

 

The above table shows the comparison of IMC-TDD and 

proposed system of example 2. Here we are comparing the 

overshoot, setting time and IAE. In proposed system we 

are using Firefly optimization algorithm for existing 

system. The table shows that less overshoot, less settling 

time, less IAE for both setpoint and disturbance methods. 

 

Example 3: Integrating plus first order plus time delay 

system 

𝐺𝑝3(𝑠) =
𝐾𝑒−𝜃𝑠

𝑠(𝑠 + 1)
 

The tuning parameters 𝜆 and 𝛽 are approximated as 0.115 

and 0.20, respectively to provide 𝑀𝑠= 2.5. The controller 

parameters are 𝐾𝑡=0.01, 𝐾𝑑=1.01 and 𝐾𝑑𝑑=1.0. 

Considering a disturbance input occurring at time 𝑡 = 150 

seconds for the simulation study, Figs. 7 and 8 illustrate 

the corresponding servo and regulatory responses.  

 

Figure 7: Servo response 

 

Figure 8: Regulatory response 

The servo and regulatory performances are shown in Figs. 

7 and 8. Regulatory response shows when the disturbance 

is applied for system. The performance of the system 

demonstrates zero oscillations, minimal settling time, 

reduced overshoot, and minimum Integrated Absolute 

Error for setpoint tracking, along with superior 

disturbance rejection. 

 

Contr

ol 

Meth

od 

Set Point Disturbance 

 %Over

shoot 

Ts IA

E 

%Over

shoot 

Ts IA

E 

Prop

osed 

0 25.

642 

0.2

36 

7.246 22.

728 

0.0

91 

IMC 

TDD 

0 39.

563 

0.4

62 

19.7 23.

663 

0.1

40 

 

Table 4: Comparison Table 

 

The above table shows the comparison of IMC-TDD and 

proposed system of example 3. Here we are comparing the 

overshoot, setting time and IAE. In proposed system we 

are using Firefly optimization algorithm for existing 
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system. The table shows that less overshoot, less settling 

time, less IAE for both setpoint and disturbance method. 

 

 5.  CONCLUSION AND FUTURE WORK: 

 

  Based on the constraints of the conventional 

controller applied to system, a new algorithm-based 

tuning for the controller is observed its servo and 

regulatory responses and the system output performance 

for disturbances. it can conclude that the system's 

performance is superior when utilizing a Fractional Order 

IMC-TDD controller for integrating process tuned by the 

Firefly Optimization Algorithm, Exhibits absence of 

oscillations, minimal settling time with reduced 

overshoot, achieving minimal Integrated Absolute Error 

(IAE) for setpoint tracking, along with superior 

disturbance rejection compared to alternative methods. 

For further study on this system a non-linear system can 

be implemented to further enhance its practical 

applicability and performance. 
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