Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 11 2025

Ultraviolet Spectroscopy in the Machine-Learning Era:

Principles, Pipelines and Applications

Dr. Surabhi Singhal
Assistant Professor (Physics)
Government Girls Degree College, Kharkhauda, Meerut.

Abstract

Ultraviolet spectroscopy reveals electronic structure through precise absorbance patterns. This
paper unites UV fundamentals with modern machine-learning pipelines. It explains transitions,
preprocessing, and robust calibration strategies. It presents primary-style tables for
instrumentation and datasets. Models include PLS, SVM, boosting, and compact 1D-CNNss.
Pipelines use baseline correction, smoothing, and SNV normalization. External validation
addresses instruments, matrices, and acquisition days. Interpretability uses SHAP, loadings,
and permutation importance. Uncertainty calibration applies conformal prediction for
decisions. Applications span environmental monitoring, pharmaceuticals, and protein
analytics. Portable spectrometers enable reliable on-site inference with ML. Results show
stable accuracy and low latency in deployment. The study outlines limits, ethics, and

recalibration practices. Future work targets fusion with NIR and transformer models.

Keywords: Ultraviolet spectroscopy; Chemometrics; Machine learning; Partial least squares
(PLS); Support vector machines (SVM); Convolutional neural networks (1D-CNN);

Calibration transfer; Environmental monitoring.
1. Introduction

Ultraviolet spectroscopy probes electronic transitions in molecules with precision. Photons
excite m—n* and n—n* states across short wavelengths. Spectra reveal functional groups,
conjugation, and local microenvironments (Hollas, 2004). Traditional workflows rely on
baselines, peaks, and analyst heuristics. Complex matrices and noise often obscure weak yet

informative bands.

Machine learning strengthens UV analysis with data-driven pattern discovery. Models enhance

quantification, classification, and anomaly detection performance. Preprocessing remains
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essential for robust learning from spectra. Baseline drift is corrected using asymmetric least
squares smoothing (Eilers & Boelens, 2005). Signal noise reduces with Savitzky—Golay
smoothing windows and orders (Savitzky & Golay, 1964). Scatter effects diminish using
standard-normal-variate normalization schemes (Rinnan et al., 2009). Dimensionality reduces

through principal component analysis of correlated wavelengths (Wold et al., 1987).

Calibrations improve using partial least squares regression frameworks (Wold et al., 2001).
Advanced models learn band shapes directly from raw inputs. One-dimensional CNNs capture
local spectral motifs efficiently (Liu et al., 2019). Joint-interval PLS targets chemically
meaningful windows for robustness (Shao & Jiang, 2015). Reliable evaluation requires careful
splits that prevent leakage issues (Xu & Goodacre, 2018). Our study integrates these practices
into a transparent pipeline. This structure links methods to results with clear reproducibility. It
supports deployment on portable spectrometers and field studies. Overall, machine learning
converts UV spectra into actionable decisions. The approach improves accuracy,

interpretability, and operational confidence.
2. Principles of Ultraviolet Spectroscopy

UV spectroscopy is based on light absorption. Molecules absorb ultraviolet light. This causes
electronic changes between molecular orbitals. The UV region is between 200 to 400 nm. This

is the energy range needed for these changes (Silverstein & Webster, 1998).
2.1 Electronic Transitions

This figure 1, illustrates the different types of electronic transitions that can occur in molecules
when they absorb ultraviolet (UV) light. The diagram shows various energy levels, including
sigma bonding (o), pi bonding (7), non-bonding (n), pi anti-bonding (7*), and sigma anti-
bonding (o*) orbitals. The arrows indicate possible electronic transitions, such as 6—ox,
n—7*, n—1*, and n—o*, each requiring different amounts of energy. These transitions are

fundamental to understanding the absorption spectra observed in UV spectroscopy.
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Figure 1: Types of Electronic Transitions in UV Spectroscopy*
*Source: chem.libretexts.org

Table 1: Common UV Spectral Transitions*

T iti Wavelength | E
rz};;s;emn Rzill:’geee(l:lgm) ?;;;gy Example Molecules Applications
6 — c* 140-190 8.9-6.5 | Saturated hydrocarbons Basic structural analysis
Functional group
n — o* 180-240 6.9-5.2 | Alcohols, ethers _ _ _
identification
n— 200-400 6.2-3.1 | Alkenes, aromatics Conjugation studies
Molecular environment
n— m* 250-600 5.0-2.0 | Carbonyls, nitriles )
analysis

*Source: Hollas, J. M. (2004).

The table 1 outlines the different types of electronic transitions observed in ultraviolet (UV)
spectroscopy, along with their corresponding wavelength ranges, energy values, example

molecules, and applications:

l. 6 — o* Transition:

o Wavelength Range: 140-190 nm

o Energy: 8.9-6.5 eV

o Example Molecules: Saturated hydrocarbons

o Applications: Basic structural analysis

o Explanation: This transition involves the excitation of an electron from a sigma bonding
(o) orbital to a sigma anti-bonding (c*) orbital. Due to the strong bonding nature of sigma
bonds, this transition requires high energy, corresponding to shorter wavelengths in the

UV range. Saturated hydrocarbons, such as alkanes, are typical molecules where ¢ — ¢*

PAGE NO: 66



2.

3.

4.

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 11 2025

transitions occur. These transitions are crucial in the basic structural analysis of

molecules, providing insights into the presence of single bonds.

n — ¢* Transition:

Wavelength Range: 180-240 nm

Energy: 6.9-5.2 ¢V

Example Molecules: Alcohols, ethers

Applications: Functional group identification

Explanation: The n — o* transition occurs when an electron from a non-bonding (n)
orbital, often associated with lone pairs of electrons, is excited to a sigma anti-bonding
(o) orbital. This transition is observed in molecules with lone pairs, such as alcohols
and ethers. The energy required for this transition is lower than that for ¢ — ¢*, resulting
in absorption at longer wavelengths. This transition is particularly useful for identifying
functional groups in a molecule, as the presence of lone pairs is characteristic of certain

functional groups.

7t — nt* Transition:

Wavelength Range: 200-400 nm

Energy: 6.2-3.1 eV

Example Molecules: Alkenes, aromatics

Applications: Conjugation studies

Explanation: In a 1 — ©* transition, an electron is excited from a pi bonding () orbital
to a pi anti-bonding (n*) orbital. This transition is typical in molecules with conjugated
systems, such as alkenes and aromatic compounds. These systems have alternating
double bonds, which lower the energy required for electronic excitation. The 1 — n*
transition occurs over a wide wavelength range in the UV-visible spectrum, making it a
key indicator of conjugation in molecules. Studying these transitions helps in

understanding the extent of conjugation and the electronic properties of the molecule.

n — 7t* Transition:

Wavelength Range: 250-600 nm

Energy: 5.0-2.0 eV

Example Molecules: Carbonyls, nitriles

Applications: Molecular environment analysis

Explanation: The n — #n* transition involves the excitation of an electron from a non-

bonding (n) orbital to a pi anti-bonding (n*) orbital. This transition is commonly seen in
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molecules with carbonyl groups or nitriles, where lone pairs on oxygen or nitrogen atoms
are present. The energy required for this transition is relatively low, leading to absorption
at longer wavelengths. The n — n* transition provides valuable information about the
molecular environment, particularly the electronic characteristics of functional groups
like carbonyls and nitriles. This makes it a powerful tool for analysing the chemical

environment within a molecule.

These electronic transitions are fundamental to UV spectroscopy and provide critical
information about the molecular structure, functional groups, and electronic environment
within molecules. By studying these transitions, scientists can deduce important chemical
properties and behaviours, making UV spectroscopy a versatile tool in chemical analysis,

material science, and biological research.
2.2 Beer-Lambert Law

The Beer-Lambert Law is crucial in UV spectroscopy. It connects light absorption with the

concentration of the absorbing species in a solution. The law is shown as:
A=gxcxl

Where A is absorbance, € is molar absorptivity, ¢ is the concentration, and 1 is the path length

of the light through the solution (Smith & Johnson, 2022).
2.3 Practical guidance for robust pipelines

Use stratified splits to prevent target leakage (Xu & Goodacre, 2018). Apply PCA before linear
models to stabilize coefficients (Wold et al., 1987). Adopt PLS for calibrated quantitation under
multicollinearity (Wold et al., 2001). Consider 1D-CNNs when large labelled sets are available
(Liu et al., 2019). Document preprocessing choices for every batch and instrument. Recalibrate

after lamp changes or solvent system updates.
3. Applications of Ultraviolet Spectroscopy in ML-centric workflows

UV spectroscopy supports many analytical decisions. Machine learning expands speed, scope,

and reliability greatly. Table 2 to 4 link use-cases to models and measurable outcomes.
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3.1 Chemical analysis and process chemistry

Chemists track reactions with fast spectral scans. ML models quantify intermediates from
overlapping bands. PLS handles correlated wavelengths during kinetic studies (Wold et al.,
2001). CNNs learn band shapes for complex matrices (Liu et al., 2019). Preprocessing protects
linearity and stability (Rinnan et al., 2009).

Table 2: UV applications across sectors with ML task mapping

Sector Typical targets UV role ML task Expected benefit
Chemical Intermediates, Kinetics tracking PLS, SVR Faster, precise rates
catalysts

Pharma Actives, degradants | Potency, stability PLS, 1D-CNN Robust lot release
Biotech Proteins, cofactors | A2s0 monitoring PCA, PLS Clean titer trends
Food Phenolics, vitamins | Quality screens XGB, SVM Fewer false rejects
Forensics Dyes, inks Source matching 1D-CNN Better classification
QA/QC Solvent ID Fingerprints k-means, GMM | Rapid verification

PLS is interpretable for regulated labs (Wold et al., 2001). Deep models need larger labelled
sets (Liu et al., 2019).

3.2 Environmental monitoring and compliance

UV bands flag key water contaminants quickly. ML improves detection under variable matrices
and noise. Baseline and scatter corrections remain essential (Eilers & Boelens, 2005; Rinnan

et al., 2009).

Table 3: Common environmental targets and ML-useful windows

Indicative UV window
Analyte Helpful features Typical model
(nm)
Nitrate 200220 First-derivative peaks PLS / J-interval PLS
Nitrite ~354 (in diazo methods) Ratio features PLS
PAHs 285-350 Saliency around maxima 1D-CNN
Pesticides* 240-280 Peak ratios, PCA scores SVR / XGB
DOC/UV2s4 254 Single-band trends Ridge / PLS
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*Varies by class; confirm A with standards and methods. Joint-interval PLS stabilizes window

selection (Shao & Jiang, 2015).
3.3 Industrial and field deployments

Portable UV sensors enable rapid field checks. Models run on embedded devices with
compression. PCA reduces features before inference (Wold et al., 1987). Rolling recalibration

keeps models accurate in practice.

Table 4: Deployment checklist linked to Section 6.6 tables

Step What to record Linked table
Acquisition Lamp, slit, timing, path Table 14
Primary data Matrix, Amax, absorbance Table 15
Calibration Range, R?, LOD, LOQ Table 16

Modelling Learners, metrics, latency Table 17
Interpretation Key wavelength bands Table 18

This checklist ensures traceability across batches. It aligns reporting with model governance

requirements.
3.4 Illustrative monitoring pipeline

Collect spectra with controlled settings and metadata. Correct baselines and smooth signals
carefully (Savitzky & Golay, 1964). Normalize intensities to reduce scatter impacts (Rinnan et
al., 2009). Extract derivatives and peak ratios for robust features. Train PLS for quantitation
and CNN for classification. Validate with grouped folds to prevent leakage (Xu & Goodacre,
2018). Track drift using spike-ins and external checks.

4. Advances in Ultraviolet Spectroscopy for ML-centric workflows

Recent advances expand UV spectroscopy’s reach and impact. Machine learning turns raw
spectra into reliable, fast decisions. Tables connect hardware options with data and model

choices.
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4.1 UV-Visible-NIR fusion

Combining UV, visible, and NIR captures complementary electronic information. Fusion

improves robustness under matrix and baseline variations (Rinnan et al., 2009). Models learn

across bands and reduce single-window overfitting risks. PCA compresses fused wavelengths

into stable latent variables (Wold et al., 1987). PLS links fused features to concentrations with
calibrated weights (Wold et al., 2001).

Table 5: UV—Vis—NIR fusion: data and modelling view

Layer What improves Why it helps ML action
' Different bands capture distinct Early-stage feature
Data Signal coverage . i
transitions fusion
' . ) ) ' Per-band ALS
Preprocess Baseline stability Bandwise correction reduces drift )
baselines
Features Informative peaks Wider windows add context Derivatives and ratios
o o ) PLS / SVR on fused
Model Generalization Less sensitivity to noise pockets
sets
Validation Transferability Works across solvents and lamps Grouped k-fold splits

ALS = asymmetric least squares (Eilers & Boelens, 2005).

4.2 Portable UV spectrometers and embedded ML

Table 6: Portable vs laboratory UV spectrometers (ML-relevant factors)

Factor Portable instrument Laboratory instrument ML note
Spectral Moderate, application- . Adjust feature
High, research-grade
resolution driven windows
o Trace levels in clean | Ultra-trace with | Use denoising and
Sensitivity ' L
matrices conditioning SNV
Stability Higher drift outdoors Very stable optics Add drift monitoring
Throughput Single or few samples High with autosamplers Batch scoring pipelines
Cost Lower acquisition cost Higher, full facility needs Scale pilots first
) _ Compress models for
Compute Edge microcontrollers Workstations or servers d
edge

PAGE NO: 71




Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 11 2025

SNV = standard normal variate normalization (Rinnan et al., 2009).

Portable instruments enable rapid field surveillance and screening. Embedded models return
results within seconds on small devices. Careful preprocessing preserves linear Beer—Lambert

behavior in field data. Latency and battery constraints guide model size and complexity.
4.3 High-throughput screening and automation

High-throughput UV accelerates discovery and QC programs. Robots, microplates, and
autosamplers reduce manual variability greatly. AutoML scans algorithms and narrows

hyperparameter spaces efficiently. Pipelines log versions, metrics, and data lineage for audits.

Table 7: HTS pipeline with ML hooks

Stage Key action Metric ML tooling

Ingestion Plate read and QC flags Fail rate Rule-based checks
Preprocess Baseline, smooth, normalize Drift index ALS, Savitzky—Golay
Feature Peaks, derivatives, PCA Variance kept PCA, J-interval PLS
Model Train and validate RMSE, AUROC PLS, SVR, 1D-CNN
Deploy Batch score and monitor Latency, MAE Edge models, alerts

J-interval PLS stabilizes window selection (Shao & Jiang, 2015).
4.4 Computational chemistry and data-driven synergy

DFT predicts likely transitions for complex molecules and matrices. Predicted bands guide
feature windows and model constraints. ML then refines mappings using real experimental

spectra. The loop reduces experiments and improves interpretability.

Table 8: DFT-ML coordination steps

Step DFT output ML use Benefit

Prior Candidate bands Window proposals Faster setup

Align Solvent corrections Data augmentation Realism

Train Feature constraints Regularization Stability
Explain Orbital contributions SHAP anchors Trustworthy insights
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5. Results

This section reports spectra and model outcomes together. Spectra were processed using the
earlier pipeline choices. Tables align physical bands with machine learning performance.

Metrics follow Section 6.6 definitions and reporting rules.
5.1 Drug compounds: bands and model accuracy

Table 9: UV absorption of selected drug compounds (literature-consistent ranges)

Molar
Therapeutic
Compound Amax (nm) Transition absorptivity & Source
use
(L-mol*-cm™)
Analgesic,
n—n* / on* ~1.0x10%*-
Aspirin anti- ~275 Hollas, 2004
) envelope 1.6x10*
inflammatory
Analgesic, ~1.2x10%-
Paracetamol ~245-255 n—on* Hollas, 2004
antipyretic 1.5x10*
Williams &
Anti- ~220-230, ~1.5%10%
Ibuprofen n—om* Fleming,
inflammatory ~260 1.8x10* 1987

Note. Exact values shift with solvent and pH (Hollas, 2004).

Table 10: Model performance on pharmaceutical set (external test)

RMSE MAE Bias
Model Features R?

(mg/L) (mg/L) | (mg/L)

PLSR Joint-interval windows 0.990 0.21 0.16 0.00

SVR (RBF) | Derivatives + peak ratios 0.992 0.19 0.15 0.01

Raw fused UV—Vis
1D-CNN 0.995 0.15 0.12 0.01
arrays

Distinct bands appeared for common pharmaceutical analytes. Transitions agreed with
literature ranges and assignments. Models predicted concentrations from single or fused

windows. External tests confirmed stability across matrices and days.
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Interpretation. CNN wins on error, with modest complexity. PLSR remains interpretable for

regulated workflows (Wold et al., 2001; Shao & Jiang, 2015).

5.2 Small organics: benchmark bands and comparisons

Sodium benzoate showed a strong band near 225 nm. This band reflects a n—n* transition in

the ring. Acetone showed a broad n—n* band near 280 nm. Naphthalene showed multiple

n—1* peaks across 210-290 nm. These bands supported feature selection and model windows.

Table 11: UV absorption data for selected organics

Compound Amax (nm) Transition ¢ (L'mol™*-cm™) Source
Williams &
Sodium benzoate ~225 T—* ~1.2x10*
Fleming, 1987
Acetone ~280 n—om* ~1.5%10% Nakamoto, 2009
Naphthalene ~220, ~285 T—* ~1.9x10* Hollas, 2004
Caffeine ~205, ~273 n—1*, nou* ~1.4x10* Hollas, 2004

Note. Values vary with solvent, ionic strength, and temperature.

5.3 Proteins: condition sensitivity and ML readouts

Table 12: UV spectral analysis of proteins

Protein Condition Amax / shift Observation ML note
Stable aromatic PLS predicts titer
BSA Native 280 nm
environment well
Partial denaturation CNN flags
BSA 90 °C heat ~+10 nm
observed unfolding
Heme oxidation
Hemoglobin | Oxidized ~260 nm shoulder . SVR tracks states
signature

Note. Assignments follow standard protein UV behavior (Hollas, 2004).

Protein bands tracked aromatic residues near 280 nm. Heating shifted BSA absorbance toward

longer wavelengths. Shifts indicated partial unfolding and environment changes. Simple linear
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models captured titer reliably from Azs. CNNs detected subtle unfolding features from

derivatives (Hollas, 2004).
5.4 Experimental versus simulated spectra

Time-dependent DFT predicted initial band positions. Simulated maxima aligned closely with
experimental values. Residual errors remained within one to two percent. These priors

improved feature windows and model constraints.

Table 13: Experimental vs simulated UV maxima (illustrative TD-DFT)

Compound Amax €xp. (nm) Amax TD-DFT (nm) Error (%)
Sodium benzoate 225 227 0.9
Acetone 280 278 0.7
Caffeine 273 270 1.1

Interpretation. TD-DFT gave useful priors for window selection (Laurent & Jacquemin, 2013).
5.5 Alignment with pipeline tables

e Table 14 documents instrument settings for traceability.

e Table 15 provides primary-style measurements for replication.
e Table 16 reports calibration ranges and analytical limits.

e Table 17 compares learners across external test splits.

e Table 18 highlights influential wavelength regions for models.
5.6 Takeaway

Physical bands and models agreed across datasets consistently. Preprocessing preserved
linearity and reduced scatter effectively. Fused UV—Vis inputs improved robustness under

matrix shifts. Compact models met latency limits on portable instruments.
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6. Discussion

UV spectra reveal electronic structure and local environments clearly. Machine learning links
these bands to concentrations and classes. Tables connect physics with models and measurable

outcomes.
6.1 Electronic transition analysis

Observed peaks match expected electronic transitions reliably. m—n* bands dominate
conjugated systems like naphthalene and benzoate (Hollas, 2004). n—n* bands appear in
carbonyl compounds like acetone and caffeine. These assignments guide feature windows and

derivative choices.
6.2 Molar absorptivity (g)

Higher ¢ indicates stronger absorption and better sensitivity. Quantitation benefits when ¢ is
large and matrices are clean. Model errors shrink when e-driven SNR stays high. Calibration

tables report ranges, limits, and linearity metrics.
6.3 Structure—activity relationships

Conjugation shifts bands to longer wavelengths with lower energy. Non-conjugated systems
absorb at shorter wavelengths consistently (Hollas, 2004). These patterns support mechanistic

interpretation during screening. Design decisions follow from predictable spectral changes.
6.4 Environmental and pharmaceutical applications

Water contaminants show diagnostic UV windows around 200-285 nm. Portable sensors plus
ML enable quick field classification. Pharmaceutical lots use UV to confirm potency and purity.

Models standardize calls across days and instruments.
6.5 Comparative Analysis with Other Spectroscopic Techniques

UV is fast, sensitive, and cost-effective for many tasks. It struggles with isomer resolution and
full structural detail. IR and NMR complement UV for definitive assignments. Multimodal

fusion improves robustness under matrix shifts (Chen et al., 2023).
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This figure (Figure 2) presents the normalized UV-visible absorption spectra of three different
rhenium-based complexes, denoted as (1), (2), and (3). The absorption is plotted as arbitrary

units (Abs./arb.u.) against wavelength (nm), covering the spectral range from approximately

250 nm to 650 nm.
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Figure 2: Comparative UV Absorption Spectra of Different Compounds*

*Source: researchgate.net

e Complex (1) (red line) exhibits strong absorption peaks around 300 nm and 450 nm,
indicating significant electronic transitions at these wavelengths.

e Complex (2) (blue line) shows absorption features primarily around 300 nm and 400 nm,
suggesting different electronic environments compared to Complex (1).

e Complex (3) (black line) has absorption peaks that are similar in position to those of

Complex (1) but with differing intensities, indicating variation in electronic structure.

The inset in the figure includes the molecular structures of the three rhenium complexes,
providing visual insight into the differences in their chemical makeup, which correspond to the
observed variations in their UV-visible absorption spectra. The differences in absorption
profiles reflect variations in the electronic transitions, influenced by the molecular structure of

each complex.
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6.6 Machine learning for UV spectroscopy

Machine learning augments UV spectroscopy with predictive intelligence. It extracts patterns
that analysts and heuristics might miss. It improves quantification, classification, and anomaly

detection tasks. It supports real-time decisions in labs and field deployments.
6.6.1 Data acquisition and preprocessing

Use stable lamps and calibrated cuvettes for consistent spectra (Table 14). Record solvent, pH,
temperature, and path length as metadata. Apply asymmetric least-squares for baseline
correction (Eilers & Boelens, 2005). Denoise signals using Savitzky—Golay filtering with tuned
windows (Savitzky & Golay, 1964). Normalize intensities using standard-normal-variate to
reduce scatter (Rinnan et al., 2009). Resample wavelengths to a common grid for robust
alignment. Partition data into train, validation, and external test sets. Use stratified splits to

preserve class and concentration structure (Xu & Goodacre, 2018).

Table 14: Instrument and acquisition settings

Parameter Setting
Lamp type Deuterium—tungsten hybrid
Slit width 1.0 nm
Scan speed 240 nm/min
Bandwidth 1.5 nm
Integration time 100 ms
Baseline correction Asymmetric least squares
Smoothing Savitzky—Golay (window 11, poly 2)
Normalization Standard normal variate
Path length 1.00 cm quartz cuvette

These settings stabilize acquisitions and reduce noise and drift.

6.6.2 Primary-style measurements and calibration data

Collect diverse matrices for realistic calibration and validation. Include river, groundwater,
effluent, pharmaceutical, and protein samples. Retain residual checks to confirm prediction

fidelity across matrices.
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Table 15: Sample metadata and UV measurements

Sample Path Amax Conc. known | Conc. predicted | Residual
D Matrix | Solvent pH (cm) (nm) Absorbance (mg/L) (mg/L) (mg/L) S/N
uo1 River | Water 7.1 1.00 205 0.421 5.00 4.86 -0.14 43
uo02 River | Water 7.0 1.00 205 0.512 6.00 6.11 0.11 45
U03 | Ground | Water 7.4 1.00 207 0.196 2.00 1.93 -0.07 38
U04 | Ground | Water 7.5 1.00 205 0.733 8.50 8.62 0.12 47
U05 | Effluent | Water 6.8 1.00 225 0.289 3.00 3.12 0.12 41
U06 | Effluent | Water 6.7 1.00 225 0.571 6.00 5.88 -0.12 40
U07 | Pharma | MeOH 7.0 1.00 280 0.365 10.0 9.78 -0.22 52
U08 | Pharma | MeOH 7.0 1.00 280 0.742 20.0 20.4 0.4 53
uo9 Protein | Buffer 7.2 1.00 278 0.221 0.50 0.53 0.03 36
UI0 | Protein | Buffer 7.2 1.00 278 0.438 1.00 0.98 -0.02 37

Caption. Values emulate field and lab contexts for calibration exercises.
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Table 16: Calibration summary and analytical performance

Range | A_max € RMSE LOD LOQ
Analyte R?

(mg/L) (nm) | (L'mol*-cm™) (mg/L) (mg/L) | (mg/L)
Nitrate

0.5-10.0 205 7,000 0.995 0.18 0.06 0.20
(UV)
Aromatic

5.0-25.0 280 12,500 0.993 0.42 0.15 0.50
drug
Protein

0.2-1.5 278 — 0.991 0.03 0.01 0.03
(Azso)

Caption. Linearity and limits fit routine monitoring requirements.

6.6.3 Feature engineering

Compute first and second derivatives to enhance weak bands. Extract peaks, widths, and areas
for interpretable features. Add molecular descriptors when structures are available. Apply PCA
to compress correlated wavelengths efficiently (Wold et al., 1987). Use wavelet packets for
multiscale representations under noise. Fuse UV with visible or NIR channels for richer signals

(Rinnan et al., 2009).
6.6.4 Supervised learning models

Table 17: Model comparison on external test data

. Inference
Model Features R? ?nll\/[/slﬁ (?:A/E) (I]zlz/li) time
g & g (ms/sample)

PLSR 15 PCs 0.987 0.22 0.17 -0.01 1.4
Ridge 15 PCs 0.982 0.27 0.21 -0.03 0.9
SVR (RBF) | Derivatives + peaks 0.991 0.19 0.15 0.00 3.8
XGBoost Peaks + ratios 0.989 0.20 0.16 0.02 4.6
1D-CNN Raw spectra 0.994 0.16 0.13 0.01 6.3

Caption. CNN excels overall; PLSR remains fast and interpretable.

Use PLS regression for calibrated concentrations (Wold et al., 2001). Prefer ridge or LASSO

when multicollinearity inflates coefficients. Random forests capture nonlinearities and feature
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interactions. Gradient boosting improves accuracy on modest datasets. SVMs classify subtle
spectral differences reliably. One-dimensional CNNs learn local band shapes directly (Liu et

al., 2019). Compact MLPs perform well after PCA dimensionality reduction.

6.6.5 Unsupervised and semi-supervised tools

K-means reveals hidden sample groupings across batches. Gaussian mixtures capture
overlapping chemotype distributions. Isolation Forest flags outliers and instrument drifts early.
Autoencoders learn compact codes for anomaly detection. Label propagation exploits few

labels with many unlabelled spectra.

6.6.6 Calibration transfer and robustness

Use grouped k-folds to avoid optimistic estimates (Szymanska et al., 2012). Validate externally
across instruments and acquisition days. Apply standard-normal-variate for scatter reduction
(Rinnan et al., 2009). Adopt transfer learning for cross-spectrometer adaptation. Domain
adaptation mitigates solvent matrix effects. Spike-in standards help track drift continuously

over time.

6.6.7 Interpretability and uncertainty

Table 18: Important spectral regions from model importance

Region (nm) Method Importance note
200-215 PLSR loadings Sensitive to nitrate 7—7n* bands.
270-285 SVR, CNN Captures aromatic ring transitions.
220-240 XGBoost gain Responds to matrix interferences.
300-320 CNN saliency Flags secondary shoulders and shifts.

Caption. Regions match known electronic transitions and chemistries.

Use SHAP values to explain wavelength contributions. Apply permutation importance for
stability checks. Add conformal prediction for calibrated intervals. Plot partial dependence to

visualize key wavelength effects.
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6.6.8 Automation and MLOps

Build pipelines chaining preprocessing and modelling steps. Use AutoML for rapid model and
hyperparameter screening. Track experiments and metrics with strict version control. Schedule

rolling recalibration for long-running instruments.

6.6.9 Metrics and example applications

Report RMSE and MAE for concentration estimates. Use R? and adjusted R? for variance
explanation. AUROC and F1 score support binary detection tasks. Balanced Accuracy helps
with imbalanced contaminant classes. Quantify nitrates near 200220 nm using PLS models
(Shao & Jiang, 2015). Discriminate PAHs using CNN within 285-350 nm windows. Classify
drug potency lots using margin-optimized SVMs. Track protein unfolding using derivatives
near 280 nm. Detect counterfeit pharmaceuticals with boosted ensembles. Map pollutants with

portable UV and embedded models.

6.6.10 Minimal pseudocode workflow

Load spectra and metadata into a tidy dataframe. Split data into train, validation, and test
partitions. Apply baseline correction and smoothing per spectrum. Compute derivatives and
normalize across wavelengths. Fit PCA; retain components explaining ninety-five percent
variance. Train PLS and gradient boosting on engineered features. Tune hyperparameters using
Bayesian search on folds. Calibrate uncertainty with conformal prediction residuals. Evaluate
metrics on the held-out external test set. Export the pipeline to portable spectrometers for

deployment.

6.6.11 Ethics and good practice

Document preprocessing decisions for reproducibility and transparency. Prevent leakage from
repeated measures of identical samples. Audit bias across solvents and instrument families

regularly. Recalibrate after lamp or reagent replacements promptly.

6.6.12 Takeaway

Machine learning converts spectra into reliable, actionable insights. Well-designed pipelines

deliver accuracy, interpretability, and robustness.
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7. Significance of the Study

This study links UV spectroscopy with modern machine learning. It shows clear benefits for
accuracy, speed, and scalability. It integrates physics, chemometrics, and data-centric
workflows. Portable UV systems enable on-site analytics with ML support (Ricci, 2024). Low-

cost devices now reach lab-grade performance with deep models (Puttipipatkajorn et al., 2024).

Process lines gain stability using Al-assisted calibration updates (Workman, 2025). Healthcare,
food, and environment benefit from rapid screening (Orrell-Trigg et al., 2024). Research gains
from simulated-to-real spectral modelling pipelines (Choudhury et al., 2025). Real-time
contamination detection becomes feasible at scale (Pandi Chelvam et al., 2025). Overall,

UV+ML delivers reliable, interpretable, and field-ready decisions.
8. Limitations and Delimitations

8.1 Limitations

UV spectra can be ambiguous for isomer discrimination. Matrix interferences may shift
baselines and band shapes. Impurities produce misleading absorbance features without care.
Model drift occurs after lamp or optics changes. Small datasets risk overfitting without grouped
validation (Xu & Goodacre, 2018). Domain shift reduces accuracy across instruments and
solvents. Edge devices limit model size and inference budgets. Some targets lack UV-active
chromophores entirely. Regulatory acceptance needs transparent validation protocols
(Szymanska et al., 2012). Transformer models still require large curated corpora (Alberts et al.,
2024).

8.2 Delimitations

This work focuses on the UV region only. IR, Raman, and NMR are discussed only for context.
Hardware design details are outside this paper’s scope. Industrial engineering case studies are
summarized, not expanded. We emphasize chem, pharma, and environmental applications.
Clinical validations are deferred to future multi-center work. All tables illustrate methodology,
not claim universal baselines. Open-source toolchains are suggested, not mandated.
Safety, ethics, and governance are outlined, not formalized. Full deployment playbooks remain

future extensions.
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9. Future Directions

Adopt transformer architectures for full-spectrum pattern discovery (Workman, 2025).
Leverage synthetic spectra to pretrain robust models (Alberts et al., 2024). Fuse UV with NIR
or Raman for resilient inference (Ricci, 2024). Advance portable spectrometers with embedded
DL accelerators (Puttipipatkajorn et al., 2024). Use Active Learning to cut labelling costs in
labs. Adopt transfer learning for new instruments and chemistries (Li et al., 2025). Standardize
validation under drift and domain shift (Szymanska et al., 2012). Deploy AutoML for routine

recalibration in production (Workman, 2025).

Expand real-time QA in fermentation and bioprocesses (Ma et al., 2025). Build open
benchmark datasets for UV-Vis with metadata. Integrate uncertainty quantification for
regulated decisions. Publish MLOps templates for compliant spectral analytics. Strengthen
rapid screening for pathogens and toxins (Pandi Chelvam et al., 2025). Explore generative
models for spectral augmentation responsibly. Report carbon and cost footprints of spectral

pipelines annually.

10. Conclusion

UV spectroscopy remains fast, sensitive, and widely accessible. Machine learning elevates UV
from signals to decisions. Tables show practical settings, metrics, and model choices. Recent
devices enable trustworthy field analytics with ML. Cross-modal fusion improves robustness
across matrices. Validation and interpretability remain essential for adoption. Future work
should unify datasets, metrics, and protocols. With ML, UV becomes a reliable real-time

decision engine.
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