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ABSTRACT 

Federated Learning (FL) has emerged as a powerful paradigm that enables collaborative model 

training across decentralized clients while preserving data privacy. Instead of aggregating 

sensitive data in a central server, FL coordinates local training on distributed devices—ranging 

from smartphones to IoT sensors and institutional servers—and collects only model updates. 

This design addresses major privacy, ethical, and security concerns associated with centralized 

data storage. Between 2019 and 2024, extensive research has focused on core FL challenges such 

as non-IID data distributions, device and system heterogeneity, resource limitations, privacy 

risks arising from gradient leakage, and practical deployment barriers in fields like healthcare 

and edge IoT. 

In this paper, we review recent advances across four themes: (1) distinctions and best practices 

for cross-device vs. cross-silo FL; (2) privacy-preserving mechanisms, including differential 

privacy and secure aggregation; (3) communication- and model-compression techniques for 

reducing bandwidth usage; and (4) real-world deployments in healthcare and edge-IoT 

environments. We analyze these works based on efficiency, accuracy, privacy trade-offs, and 

deployment-level considerations such as resource savings and regulatory alignment. 

Our synthesis shows that modern compression techniques—such as quantization, sparsification, 

and knowledge distillation—can significantly reduce communication costs with minimal 

accuracy loss, making FL feasible for resource-constrained devices. Privacy mechanisms remain 

essential for sensitive domains, though they commonly introduce accuracy and utility trade-offs. 

Cross-silo deployments demonstrate performance close to centralized baselines while 

maintaining data locality, yet full-scale adoption still depends on standardization, infrastructure 

readiness, and clearer ROI evidence. 

We highlight open gaps such as limited convergence theory for private and compressed FL under 

non-IID data, lack of unified benchmarks, insufficient empirical ROI studies, and the challenges 

of scaling FL to large modern models. To support clarity, we provide comparative tables, 

research-gap matrices, and conceptual diagrams illustrating accuracy-efficiency-privacy trade-

offs, followed by prioritized directions for future research. 
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1. INTRODUCTION 

Machine learning (ML) has revolutionized many sectors by leveraging large datasets to train 

powerful predictive models. Traditional ML workflows typically centralize data from multiple 

sources into one server or data center for training. However, in domains such as healthcare, 

finance, mobile devices, and Internet-of-Things (IoT), aggregating large volumes of sensitive or 

proprietary data at a central location may be infeasible or undesirable due to privacy regulations, 

institutional policies, or bandwidth limitations [10], [17]. 

Federated Learning (FL) is an alternative paradigm that addresses these issues by enabling 

collaborative model training without centralizing raw data. In FL, individual clients hold local 

data and perform local model updates; a central server aggregates these updates to form a global 

model, as first formalized in the FedAvg framework [1], [9]. This ensures data remains on-

device or within institutional boundaries, reducing privacy risks and legal complexity. FL has 

since expanded into major application domains including healthcare [18]–[20], mobile devices 

[5], IoT systems [17], [27], and enterprise cross-silo collaborations [41], [50]. 

As FL matured between 2019 and 2024, researchers confronted a series of practical challenges 

that limited naïve FL deployment. Key among these are: 

• Data heterogeneity (non-IID data): Client data often follows heterogeneous distributions (e.g., 

hospitals with different patient demographics, varying sensor behaviors in IoT devices). Non-IID 

data degrades training stability and model performance, prompting research into specialized 

optimization techniques and algorithms such as FedProx [21], SCAFFOLD [23], FedBN [36], 

and theoretical analyses of non-IID impacts [7], [15]. 

• Resource constraints & communication costs: Many FL clients—mobile devices, low-power 

IoT sensors, edge devices—have limited computation, memory, and bandwidth. 

Communication-efficient training methods such as sparsified SGD [8], gradient compression 

[26], adaptive client participation [60], and lightweight architectures for IoT [55] have been 

extensively explored. 

• Privacy & security risks: Although raw data stays local, gradients and model updates may leak 

sensitive information, supporting attacks such as membership inference [11], [12] and GAN-

based leakage [13]. To mitigate these risks, researchers developed secure aggregation protocols 

[3], differential privacy approaches [6], [31], [45], homomorphic-encryption-based FL [39], [48], 

and defenses against poisoning and backdoor attacks [14], [71]. 

• Real-world deployment challenges: For FL to transition from academic study to practical 

deployment (e.g., hospital networks, smart cities, industrial IoT), issues such as system 

architecture, governance, regulatory compliance, personalization, and heterogeneous 

infrastructure must be addressed. Surveys and system frameworks highlight these deployment 

considerations [28], [50], [51], [53]. 
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This paper aims to provide a consolidated, up-to-date account of how the FL community tackled 

these challenges between 2019 and 2024. We review advances in optimization, privacy, 

compression, communication efficiency, personalization, and system design; summarize real-

world applications in healthcare and IoT; analyze trade-offs and gaps; and propose future 

directions to enable more robust, scalable, and privacy-compliant deployments. 

2. BACKGROUND AND FOUNDATIONS 

Federated Learning (FL) emerged as a response to the growing inability to centralize sensitive 
data generated across modern digital ecosystems. Traditional machine learning pipelines assume 
that data can be freely collected and stored on a central server, but this assumption collapses in 
real-world domains such as healthcare, finance, mobile devices, and large-scale IoT 
deployments, where regulations and operational constraints prohibit large-scale data aggregation 
[10], [17], [19]. FL reverses the centralized learning paradigm by sending the model to the data 
rather than the data to the model. This decentralized training approach was formalized in early 
works such as FedAvg [1], [9] and later expanded through large-scale mobile deployments [5], 
[42], [43]. 

In this workflow, clients—whether hospitals, banks, smartphones, or sensors—perform local 
training on private datasets and share only model updates. This enables collaborative learning 
while maintaining data locality and reducing the risk of exposure [2], [10]. FL commonly 
operates in two settings: cross-device FL, involving millions of highly resource-constrained and 
intermittently connected devices [5], [27], and cross-silo FL, involving a small number of 
reliable organizations with structured governance [41], [50]. Each setting carries distinct 
assumptions, communication constraints, privacy requirements, and optimization needs that 
shape system design [28], [51]. 

Despite its privacy-preserving intent, FL introduces significant technical challenges stemming 
from real-world data and device heterogeneity. Client datasets are often non-IID, imbalanced, 
and personalized, causing divergent gradient directions and unstable convergence—phenomena 
collectively known as client drift [7], [15], [21], [23]. Devices in cross-device FL vary widely in 
computation, memory, battery life, and network availability, requiring partial participation, 
asynchronous updates, dynamic sampling, and lightweight model architectures [55], [60]. 
Communication quickly becomes a bottleneck because FL requires repeated rounds of 
transmitting model parameters or gradients. Limited uplink bandwidth and large model sizes lead 
to significant training delays, motivating research into compression strategies such as 
quantization, sparsification, and pruning [8], [26], [80] as well as adaptive and communication-
efficient optimization [30], [35], [56]. 

To address these constraints, modern FL systems incorporate personalized models [40], [72], 
hierarchical aggregation structures [29], and efficient client selection mechanisms that improve 
scalability and robustness [60]. These innovations aim to stabilize convergence under non-IID 
distributions while reducing both resource consumption and communication overhead. 
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FL does not inherently guarantee privacy or security; instead, it requires dedicated mechanisms 
to prevent leakage of sensitive information through transmitted gradients or model deltas. 
Research has shown that model updates can expose private data through reconstruction, 
inference, or GAN-based attacks [11]–[13]. Consequently, FL implementations integrate explicit 
privacy-preserving mechanisms such as differential privacy (DP) [6], [31], [45], secure 
aggregation [3], homomorphic encryption (HE) [39], [48], and batch-level or task-specific DP 
techniques for NLP and other domains [32], [68]. Cross-silo deployments further demand strong 
governance, auditability, and regulatory compliance to build trust between institutions [38], [50], 
[53], [73]. Beyond privacy, FL systems must defend against a wide range of threats including 
poisoning attacks, backdoor attacks, Byzantine failures, malicious clients, and colluding 
adversaries [14], [22], [57], [58], [71]. Addressing these issues requires robust aggregation rules, 
anomaly detection mechanisms, adversarially resilient optimization, and secure system-level 
designs [31], [53], [78]. 

In summary, the foundations of FL rest on three interconnected pillars: distributed optimization, 
privacy-preserving computation, and system engineering. Each pillar brings its own algorithmic 
and operational challenges that must be addressed for FL to succeed in large-scale, real-world 
deployments [2], [28], [51], [54]. 

Table 1: Comparison of Cross-Device and Cross-Silo Federated Learning 

Feature / Dimension Cross-Device FL Cross-Silo FL 

Number of Clients 
Millions of devices (phones, 
wearables, IoT sensors) 

Few institutions (hospitals, 
banks, companies) 

Client Reliability 
Low, intermittent, 
unpredictable 

High, stable, synchronized 

Compute Capacity 
Limited (battery, CPU, 
memory constraints) 

High, institutional-grade 
servers 

Data Characteristics 
Highly personalized, 
extremely non-IID, small 
datasets 

Structured, moderate non-IID, 
larger datasets 

Connectivity Unstable, variable bandwidth 
Stable, high-speed 
connections 

Participation Rate Very low (1–10% per round) 
High (often all participants 
contribute) 

Governance Requirements Minimal, device-level policies 
Strict auditability, compliance, 
legal regulation 

Use Cases 
Mobile keyboards, voice 
assistants, wearables, home 
IoT 

Healthcare imaging, financial 
fraud detection, enterprise 
collaboration 

System Design Focus 
Communication efficiency, 
resource awareness, sampling 

Privacy governance, 
reliability, stronger security 
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Figure 1: A typical cross-silo FL process 

 

Figure 2: System overview of cross-device federated learning 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

PAGE NO: 102



 

Table 2: Comparison of federated learning studies 
Paper FL 

basics 
Literature review  Privacy 

mechanism 
Applications   Privacy 

metrics 
  Centralized Decentralized   NL

P 
Health 
care 

Io
T 

  

Zhang et al. (2021) ✓ ✓ ✗  ✓ ✓ ✓ ✓  ✗ 

Khan et al. 
(2023) 

✓ ✗ ✗  ✗ ✓ ✓ ✓  ✗ 

Li et al. (2023a) ✓ ✗ ✓  ✓ ✗ ✓ ✗  ✗ 

Gabri- elli et al. 
(2023) 

✓ ✗ ✓  ✓ ✗ ✗ ✗  ✗ 

Liu et al. (2024) ✓ ✗ ✓  ✓ ✗ ✗ ✗  ✗ 

Sameera et al. 
(2024) 

✓ ✗ ✓  ✓ ✗ ✗ ✗  ✗ 

 

3. FEDERATED LEARNING ARCHITECTURES 

Federated learning architectures define how distributed clients interact, exchange model updates, 
and collaboratively converge toward a global objective without sharing raw data. The 
architectural structure largely determines communication efficiency, model accuracy, scalability, 
and resilience to failures or adversarial behaviors. Building on the foundational principles of 
distributed model training, FL architectures are commonly categorized into three primary 
paradigms: centralized, decentralized, and hierarchical [28], [29], [51]. Each architecture reflects 
a different coordination topology and is associated with distinct advantages, constraints, and 
application suitability. 

Federated learning enables multiple clients to collaboratively train models using their local data 
while exchanging only model parameters, as shown in Fig. 1. This paradigm preserves data 
privacy and supports learning across distributed, heterogeneous, and privacy-sensitive 
ecosystems [1], [2], [10]. 
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Figure 3: A schematic diagram of federated learning 

 

3.1 Categories of federated machine learning 

Figure 2 illustrates the classification of FL based on three key aspects. First, depending on 
system architecture, FL can be categorized into centralized and decentralized approaches. In 
centralized FL, a single server orchestrates training using the client–server paradigm, selecting 
clients, aggregating local updates, and redistributing global model parameters. This is the classic 
synchronous architecture exemplified by FedAvg [1], [9], and widely deployed in mobile and 
IoT ecosystems [5], [27]. In decentralized FL, there is no central server. Clients communicate 
directly with each other, aggregating updates in a P2P fashion using gossip mechanisms or 
blockchain-assisted coordination [29], [38]. Each client maintains a shared global model and 
participates in distributed consensus, which eliminates reliance on a central authority. 

Second, based on federation scale, FL distinguishes between cross-device and cross-silo settings. 
Cross-device FL consists of massive numbers of mobile phones, wearables, or IoT devices with 
highly varied processing capabilities and intermittent connectivity [5], [27], [55]. Cross-silo FL 
includes a small set of stable, reliable institutions such as hospitals or banks, where devices 
operate under strong governance and regulatory frameworks [19], [20], [41], [50]. As noted by 
Gabrielli et al. (2023), cross-device FL must accommodate high device heterogeneity and low 
participation rates, whereas cross-silo FL benefits from stronger coordination and infrastructure 
support [51]. 
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Figure 4: Categories of federated learning 

3.2 Centralized Federated Learning Architecture 

The centralized architecture is the most widely deployed and conceptually straightforward FL 
configuration. A single server coordinates client selection, initializes the model, aggregates 
updates, and distributes global parameters [1], [9], [21]. Clients perform local training and return 
model updates, which are aggregated typically via weighted averaging (FedAvg). This 
architecture offers simplicity, predictable synchronization, efficient orchestration, and 
compatibility with large-scale deployments such as mobile keyboards, wearables, and IoT 
devices [5], [42], [43]. 

The central server can also enforce participation rules, validate client updates, maintain 
metadata, and detect abnormal behavior, providing strong operational control [41], [50]. 
However, centralized FL suffers from single-point-of-failure risks; the server is a critical 
component whose failure or compromise disrupts the entire system. Communication bottlenecks 
arise when many clients attempt to upload updates simultaneously, limiting scalability in large 
deployments [27], [55]. 

Moreover, relying on a central aggregator introduces trust and privacy concerns: although raw 
data remain local, gradient updates can leak sensitive information through reconstruction or 
inference attacks [11]–[13]. Therefore, centralized FL deployments commonly incorporate 
differential privacy [6], [31], [45], secure aggregation [3], and homomorphic encryption [39], 
[48]. To address bandwidth limitations, models may employ compression or sparsification 
techniques [8], [26], [80]. 
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3.3 Decentralized Federated Learning Architecture 

Decentralized FL eliminates reliance on a central server by enabling direct client-to-client 
communication. Updates are exchanged using peer-to-peer protocols, gossip-based aggregation, 
or blockchain-based consensus mechanisms [29], [38]. Each client maintains its own version of 
the global model and synchronizes parameters with selected peers. This architecture improves 
fault tolerance since no single entity controls or compromises the learning pipeline. It is 
particularly suitable for edge IoT networks, vehicular systems, sensor grids, and distributed 
industrial ecosystems where authority is distributed or connectivity is dynamic [27], [52]. 

Blockchain-enhanced decentralized FL further strengthens transparency and verifiability by 
maintaining immutable update logs and supporting secure, auditable aggregation [38], [73]. 
Clustered topologies, peer selection strategies, and cryptographic protocols enhance robustness 
against adversarial manipulation [14], [31], [53].Nonetheless, fully decentralized FL is more 
complex to manage. Achieving consensus among highly diverse participants requires 
sophisticated algorithms that may increase communication cost. The absence of a central 
coordinator can lead to inconsistent updates if peers exchange parameters asynchronously. 
Gossip-based exchange reduces communication frequency but introduces slower convergence. In 
systems with significant data heterogeneity, clients may diverge from the global objective if peer 
selection is suboptimal. Despite these challenges, decentralized FL remains a powerful 
architecture for privacy-preserving and resilient learning systems. 

 

 

Figure 5: Network Structure of Federated Learning 
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3.4 Federated Learning Workflow 

Federated learning systems typically follow a four-step iterative training cycle [1], [9], [21]: 

(1) Client Selection: The server or coordinator identifies eligible clients based on availability, 
network quality, computational resources, and policy constraints. Cross-device FL typically 
selects a small subset of clients due to limited device availability, whereas cross-silo FL often 
involves full participation [41], [50]. 

(2) Model Broadcasting: The global model is initialized and distributed to clients. Initial weights 
may be random or pre-trained using public or weakly-private data [10], [42], [43]. 

(3) Local Training: Clients train the model using their private datasets and compute gradient 
updates or weight deltas. Local training is affected by data heterogeneity, resource constraints, 
and personalization needs [7], [15], [72]. 

(4) Aggregation and Update: The server aggregates client updates—most commonly via 
weighted averaging, but many adaptive and robust aggregation strategies exist (e.g., FedProx 
[21], SCAFFOLD [23], adaptive optimizers [30], and robust aggregators [57], [58], [71]). The 
updated global model is then redistributed to clients for the next round. 

4. PRIVACY MECHANISMS IN FEDERATED LEARNING 

Privacy protection lies at the core of federated learning because, although raw data remain on-
device or within institutional boundaries, model updates can still leak sensitive information. 
Numerous studies have demonstrated that gradients and shared model parameters can reveal 
private data through inference, reconstruction, or generative attacks [11]–[13]. As a result, 
modern FL systems integrate multiple privacy techniques—information obfuscation, encrypted 
computation, and trustworthy aggregation—to create a layered and defense-in-depth privacy 
strategy [2], [31], [45], [53]. 

4.1 Differential Privacy (DP) 

Differential Privacy (DP) protects individuals by adding calibrated statistical noise to model 
updates so that the presence or absence of any specific data point minimally affects the final 
model output [6]. In FL, DP is most commonly applied on the client side, ensuring that the 
update is privacy-preserving before it leaves the device. DP optimization must account for 
privacy budgets, dataset sizes, and training frequency, balancing the trade-off between privacy 
and model utility [31], [32]. 

Advanced techniques extend DP for domain-specific tasks (e.g., NLP) or batch-level training to 
maintain model performance while enhancing anonymity [32], [68]. However, stronger privacy 
budgets can degrade model accuracy, requiring adaptive noise scaling strategies depending on 
device constraints and data heterogeneity. 
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4.2 Secure Aggregation 

Secure aggregation ensures that the server cannot see any individual client update; instead, it 
only receives the aggregated sum of all contributions. The seminal secure aggregation protocol 
proposed by Bonawitz et al. masks client updates with pairwise random values that cancel out 
during aggregation, enabling confidentiality even in large-scale deployments [3]. 

This method is particularly effective in cross-device environments with many participants 
because individual masked updates reveal no meaningful information even if partially 
compromised. Secure aggregation provides strong defenses against insider threats on the server, 
preventing fine-grained analysis or reconstruction of client-specific gradients [31], [53]. 

4.3 Homomorphic Encryption (HE) 

Homomorphic Encryption (HE) enables computation directly on encrypted data. In FL, clients 
encrypt their updates using HE schemes before transmitting them to the server, which then 
aggregates encrypted values without learning their contents [39]. Only a designated key holder—
or a secure enclave—decrypts the aggregated model. 

Although HE offers strong privacy guarantees, it introduces computational overhead, especially 
in mobile and IoT devices. Research shows that practical FL deployments often rely on 
optimized or partially homomorphic variants to maintain energy efficiency while preserving 
security [48]. 

4.4 Trusted Execution Environments (TEE) 

Trusted Execution Environments (TEEs) provide hardware-isolated regions where sensitive 
computations can occur securely. Instead of encrypting every client update, a TEE allows the 
aggregation process to take place within a secure hardware enclave, protecting intermediate 
states from external access [53], [73]. TEEs offer high computational speed compared with 
heavy cryptographic methods; however, they depend on specialized hardware, raise trust 
assumptions, and may be vulnerable to hardware-level side-channel attacks. 

4.5 Hybrid Techniques 

Modern federated systems increasingly adopt hybrid privacy approaches—combining DP, secure 
aggregation, HE, and TEEs—to balance computational cost with strong privacy guarantees. 
Studies emphasize that multi-layered mechanisms significantly reduce leakage risks, provide 
resilience against multiple attack vectors, and maintain acceptable model utility in large-scale 
deployments [31], [53], [54]. These hybrid designs represent the current trend in privacy-
preserving FL, especially in highly regulated domains such as healthcare, smart cities, and 
finance [18], [19], [49]. 
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5. MODEL COMPRESSION AND COMMUNICATION EFFICIENCY 

Federated learning repeatedly exchanges model updates across distributed clients, making 
communication one of the most expensive components of the entire training pipeline. A large 
body of work in distributed optimization and FL demonstrates that reducing update size—
through sparsification, quantization, pruning, or alternative representations—significantly 
improves scalability, training speed, and energy efficiency [8], [26], [80]. Communication 
efficiency is especially critical in cross-device FL, where clients often have limited bandwidth, 
intermittent connectivity, and resource constraints [27], [55]. 

5.1 Quantization  

Quantization compresses model updates by reducing numerical precision. Transforming 32-bit 
floating-point gradients into lower-bit representations (e.g., 8-bit or 4-bit) can cut communication 
cost by more than half with minimal impact on accuracy [26]. Dynamic and adaptive 
quantization techniques, introduced in communication-efficient FL studies, adjust precision 
based on gradient importance or update variance to help maintain convergence even under severe 
non-IID conditions [8], [56]. 

5.2 Pruning and Structured Compression 

Pruning removes parameters that contribute little to model performance. 

• Unstructured pruning eliminates individual weights, providing high compression but requiring 
specialized hardware to efficiently support sparse matrix operations. 
• Structured pruning removes entire channels, filters, or blocks, resulting in models that are 
significantly smaller and optimized for deployment on edge devices and IoT systems [27], [55]. 

Compression surveys in FL highlight pruning as an essential strategy for reducing both 
communication overhead and client-side computation, especially when training deep models 
across resource-constrained devices [80]. 

5.3 Gradient Sparsification 

Gradient sparsification transmits only the most informative updates—such as top-K gradients—
or accumulates residuals to be sent later, drastically reducing the number of values 
communicated per round. Pioneering work in sparsified SGD shows that aggressively dropping 
gradients maintains accuracy while reducing bandwidth consumption by orders of magnitude [8]. 
Federated compression surveys confirm that sparsification is one of the most effective 
communication-effectiveness methods for large-scale FL with thousands of clients [80]. 

5.4 Knowledge Distillation 

Knowledge distillation enables clients to exchange only prediction probabilities or logits instead 
of full model parameters. In FL, this can significantly shrink communication cost because 
lightweight student models learn from a shared or centralized teacher model without exchanging 
high-dimensional gradients. Early FL-specific distillation methods such as FedKD demonstrate 
competitive model performance while reducing communication size substantially [46]. 
Distillation is particularly valuable for IoT and edge devices with limited compute and memory 
resources [27], [55]. 
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5.5 Low-Rank Approximation 

Low-rank approximation compresses large matrices—such as weight matrices in fully connected 
layers—into products of smaller matrices. This reduces the number of parameters transmitted 
and the computation required per update. Communication-efficient learning studies and FL 
compression surveys highlight matrix factorization as a powerful technique for reducing model 
footprint without significantly affecting expressiveness [80]. Low-rank decompositions remain 
especially beneficial in bandwidth-constrained or latency-sensitive FL environments. 

6. REAL-WORLD APPLICATIONS OF FEDERATED LEARNING 

Federated learning has progressed from theoretical research to deployment in real-world 
environments where privacy, distributed data, and regulatory constraints converge. Its ability to 
train models collaboratively without sharing raw data makes it uniquely suited for domains such 
as healthcare, IoT, edge computing, transportation, and wearable technologies [17], [19], [27], 
[33], [49]. 

6.1 Remote Patient Monitoring and Wearables 

Wearable devices continuously capture personal biomedical signals such as heart rate, 
respiration, stress patterns, and sleep quality. Because this information is deeply sensitive, 
centralized data aggregation raises significant privacy concerns. Federated learning allows 
wearables to collaboratively improve models for arrhythmia detection, fall prediction, and 
personalized health insights while keeping raw sensor data on-device [34], [37], [62], [77]. 
Studies in FL for mobile and wearable platforms show that on-device training preserves user 
privacy, reduces network usage, and enhances personalized model performance [5], [34]. 

6.2 Industrial IoT 

Industrial IoT environments rely on large numbers of distributed sensors to monitor machine 
vibration, temperature, pressure, production metrics, and energy consumption. Sharing this 
information with cloud servers may leak proprietary manufacturing processes. Federated 
learning enables local sensors and edge devices to collaboratively train models for predictive 
maintenance, equipment diagnostics, anomaly detection, and quality assurance without exposing 
confidential data [17], [27], [52], [63]. 

Federated approaches in smart factories and industrial automation have been shown to reduce 
downtime, improve fault detection, and enhance reliability by enabling continuous learning at the 
edge [24], [47], [69]. 

6.3 Healthcare and Medical Diagnostics 

Healthcare organizations must comply with strict regulatory standards that prohibit the sharing of 
patient records. However, collaboration across institutions is essential for building accurate and 
generalizable medical models. FL enables hospitals to jointly train models for medical imaging, 
disease prediction, and clinical decision support without exchanging sensitive health data [18], 
[19], [20], [33], [76]. 

Cross-hospital FL studies demonstrate improvements in diagnostic accuracy, robustness across 
demographic distributions, and compliance with privacy regulations while maintaining high-
quality clinical performance [18], [20], [33]. 
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Figure 6: Healthcare application system based on FL 

6.4 Edge-Based Transportation Systems 
Modern vehicles generate vast amounts of data through cameras, radar, LiDAR, GPS, and 
onboard diagnostics. Sending raw sensory data to centralized servers raises safety, privacy, and 
bandwidth concerns. Federated learning allows vehicles and roadside edge units to 
collaboratively train perception, navigation, and traffic prediction models without exposing raw 
driving data [25], [70], [75]. 

FL-based transportation systems support real-time traffic flow prediction, autonomous driving 
enhancements, and environment understanding, while keeping sensitive driving traces confined 
to the vehicle [25], [75]. 

7. CHALLENGES AND OPEN PROBLEMS 

Even with major advancements, federated learning (FL) continues to face significant obstacles 
before it can be reliably deployed at scale. These challenges stem from real-world system 
constraints, heterogeneous data, security vulnerabilities, and privacy risks that must be addressed 
to ensure stable and trustworthy FL deployments [2], [28], [51], [53]. 
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7.1 Heterogeneity of Data and System 
Federated learning operates across highly diverse devices and organizations that differ in 
computation, energy capacity, network bandwidth, storage, and availability. This system 
heterogeneity causes uneven participation, stragglers, variable training speeds, and inconsistent 
contributions to the global model [5], [27], [41], [55]. 

Data heterogeneity—also known as statistical heterogeneity—creates even greater challenges. 
Clients generate data of different sizes, formats, distributions, and contexts. Such non-IID 
variability leads to divergent gradient updates, training instability, biased global models, and 
difficulties in convergence [7], [15], [21], [23], [36], [65]. These differences can cause the model 
to overfit to dominant or frequently participating clients. 

7.2 Data Availability 

In large-scale FL systems, client participation is voluntary and conditional. Devices must be 
powered, connected, idle, and willing to contribute. This leads to unpredictable data availability, 
with many clients frequently offline or inactive [5], [41], [55]. As a result, only a small and 
potentially non-representative subset of clients participates in each training round, reducing 
diversity and weakening the generalization ability of the global model. Dynamic client sampling 
and availability-aware scheduling remain open research challenges [60]. 

7.3 Data Distribution (Non-IID Data) 

FL inherently faces non-IID data distributions, as each client collects data from unique contexts 
and user behaviors. Labels, features, and sample frequencies differ across clients, causing 
conflicts between local objectives and the global optimization goal [7], [15], [21], [23], [36]. 

Consequences include: 

• slower convergence, 

• unstable model updates, 

• client drift, 

• biased or unfair global models, 

• reduced generalization across user populations. 

A wide range of methods—such as FedProx, SCAFFOLD, FedBN, FedAlign, and personalized 
FL—attempt to mitigate these issues, but no universal solution has emerged [21], [23], [36], 
[65], [72]. 
 
7.4 Communication Overhead 

FL requires continuous communication of model parameters or gradients between clients and 
servers, creating significant bandwidth, energy, and latency constraints. Deep learning models 
often contain millions of parameters, making communication the primary bottleneck [1], [8], 
[26], [80]. 

As the number of clients grows, communication demands escalate rapidly. Low-bandwidth 
networks, intermittent connectivity, and power-constrained devices worsen the problem. 
Research in compression (quantization, pruning, sparsification), adaptive communication 
schedules, and client selection aims to reduce this burden [26], [8], [35], [56], [60]. 
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7.5 Security Issues 

Although FL prevents raw data sharing, the system remains vulnerable to a variety of security 
threats. Because the server cannot easily verify the correctness or intent of client updates, 
adversaries may perform: 

• poisoning attacks, injecting malicious gradients to corrupt or manipulate the global model [14], 

[57], [58], [71] 

• backdoor attacks, embedding hidden behaviors into the model during training [14] 

• Byzantine failures, where compromised clients send arbitrary or adversarial updates [57], [58] 

• model manipulation attacks, where attackers interfere with the update or aggregation process 

[31], [53] 

In decentralized FL architectures, the attack surface expands further, as there is no central 
authority to monitor or validate updates [29], [38]. Balancing strong security with computation 
efficiency remains an open challenge. 
 
7.6 Privacy Protection 

Even though data remain local, model updates may leak sensitive information through model 
inversion, membership inference, or gradient reconstruction attacks [11], [12], [13]. Thus, 
privacy protection remains essential. Changes in model details might reveal user habits or even 
allow reconstructing original data through methods like model inversion or membership checks. 
To guard against this, techniques such as differential privacy, secure multi-party computation, 
homomorphic encryption, or trusted hardware must be integrated into the system. 

 

Figure 7: FL Challenges 
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8. FUTURE DIRECTIONS 

Figure 8 illustrates how federated learning can enhance online learning, resource optimization, 
and privacy-preserving data exchange in smart buildings by enabling localized model training. 
This highlights FL’s ability to manage diverse, continuous IoT data streams efficiently while 
reducing privacy risks by keeping raw data on-device [17], [27], [49], [52]. FL also aligns 
naturally with digital twin systems that rely on privacy-sensitive, cross-device collaboration [67]. 
However, several challenges must be addressed—such as limited communication capacity, the 
need for differential privacy (DP), encryption, and robustness to varying data distributions—
before such systems can scale effectively [26], [31], [45], [47], [55]. 

Future FL deployments in smart environments will require thoughtful system design to ensure 
scalability through efficient communication, adaptive learning strategies, and strong privacy-
preserving mechanisms. 

 

Figure 8: Future FL Directions 

8.1 Personalized Federated Learning 

A major direction for FL is personalized federated learning, which aims to produce client-
specific models rather than a single global model. Personalization techniques include: 

 Personalization layers [40] 
 Clustered or group-based personalization [44] 
 Meta-learning and adaptive optimization [30], [72] 

Personalized FL mitigates non-IID challenges by tailoring models to individual user preferences 
and data distributions, leading to greater accuracy and fairness across clients [7], [23], [36], [65]. 
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8.2 Federated Learning Without Central Servers 

Decentralized FL eliminates central servers entirely. Clients exchange updates peer-to-peer or 
through consensus mechanisms inspired by blockchain technology [29], [38], [73]. This direction 
aims to: improve resilience to single-point failures, enhance trust in multi-stakeholder 
environments, enable FL in highly dynamic edge and IoT networks [52] Decentralized 
architectures will be crucial for applications where no single entity can or should control the 
entire learning process. 

8.3 Unified Privacy-Performance Frameworks 

Future FL systems must strike an optimal balance between privacy guarantees and model 
performance. Research trends point toward unified, layered privacy frameworks that combine: 

 Differential Privacy (client- or server-side) [6], [31], [45], [68] 
 Secure Aggregation [3] 
 Homomorphic Encryption [39], [48] 
 Trusted Execution Environments [53], [73] 

Hybrid designs that automatically adjust privacy levels based on model sensitivity, device 
capacity, and task requirements are expected to become standard in large-scale deployments 
[54]. 

8.4 Ultra-Light FL Models for Micro-IoT 

As federated learning expands into micro-IoT environments—smart homes, environmental 
sensors, wearables, and embedded medical systems—models must be extremely energy-efficient, 
low-memory, and communication-aware [55], [62], [77]. Techniques such as: lightweight 
architectures, aggressive compression [26], [80], distillation-based FL [46], energy-aware 
learning [47], [69] will enable FL on tiny edge devices with milliwatt-level power budgets. 

8.5 FL in 5G/6G Edge Networks 

Next-generation networks will dramatically enhance FL’s potential. 5G and 6G provide ultra-low 
latency, high bandwidth, and massive device connectivity—ideal conditions for real-time 
collaborative learning [24], [70], [79]. These improvements will enable FL in: autonomous 
driving and intelligent transportation [25], [70], [75], remote and robotic healthcare [18], [62], 
augmented/virtual reality and edge intelligence [24], [79] Future communication-learning 
integration will allow FL systems to adapt dynamically to network constraints, enabling 
continuous, real-time model improvement across billions of devices. 
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