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ABSTRACT

Federated Learning (FL) has emerged as a powerful paradigm that enables collaborative model
training across decentralized clients while preserving data privacy. Instead of aggregating
sensitive data in a central server, FL coordinates local training on distributed devices—ranging
from smartphones to IoT sensors and institutional servers—and collects only model updates.
This design addresses major privacy, ethical, and security concerns associated with centralized
data storage. Between 2019 and 2024, extensive research has focused on core FL challenges such
as non-IID data distributions, device and system heterogeneity, resource limitations, privacy
risks arising from gradient leakage, and practical deployment barriers in fields like healthcare
and edge IoT.

In this paper, we review recent advances across four themes: (1) distinctions and best practices
for cross-device vs. cross-silo FL; (2) privacy-preserving mechanisms, including differential
privacy and secure aggregation; (3) communication- and model-compression techniques for
reducing bandwidth usage; and (4) real-world deployments in healthcare and edge-loT
environments. We analyze these works based on efficiency, accuracy, privacy trade-offs, and
deployment-level considerations such as resource savings and regulatory alignment.

Our synthesis shows that modern compression techniques—such as quantization, sparsification,
and knowledge distillation—can significantly reduce communication costs with minimal
accuracy loss, making FL feasible for resource-constrained devices. Privacy mechanisms remain
essential for sensitive domains, though they commonly introduce accuracy and utility trade-offs.
Cross-silo deployments demonstrate performance close to centralized baselines while
maintaining data locality, yet full-scale adoption still depends on standardization, infrastructure
readiness, and clearer ROI evidence.

We highlight open gaps such as limited convergence theory for private and compressed FL under
non-IID data, lack of unified benchmarks, insufficient empirical ROI studies, and the challenges
of scaling FL to large modern models. To support clarity, we provide comparative tables,
research-gap matrices, and conceptual diagrams illustrating accuracy-efficiency-privacy trade-
offs, followed by prioritized directions for future research.
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1. INTRODUCTION

Machine learning (ML) has revolutionized many sectors by leveraging large datasets to train
powerful predictive models. Traditional ML workflows typically centralize data from multiple
sources into one server or data center for training. However, in domains such as healthcare,
finance, mobile devices, and Internet-of-Things (IoT), aggregating large volumes of sensitive or
proprietary data at a central location may be infeasible or undesirable due to privacy regulations,
institutional policies, or bandwidth limitations [10], [17].

Federated Learning (FL) is an alternative paradigm that addresses these issues by enabling
collaborative model training without centralizing raw data. In FL, individual clients hold local
data and perform local model updates; a central server aggregates these updates to form a global
model, as first formalized in the FedAvg framework [1], [9]. This ensures data remains on-
device or within institutional boundaries, reducing privacy risks and legal complexity. FL has
since expanded into major application domains including healthcare [18]-[20], mobile devices
[5], IoT systems [17], [27], and enterprise cross-silo collaborations [41], [50].

As FL matured between 2019 and 2024, researchers confronted a series of practical challenges
that limited naive FL deployment. Key among these are:

* Data heterogeneity (non-IID data): Client data often follows heterogeneous distributions (e.g.,
hospitals with different patient demographics, varying sensor behaviors in [oT devices). Non-1ID
data degrades training stability and model performance, prompting research into specialized
optimization techniques and algorithms such as FedProx [21], SCAFFOLD [23], FedBN [36],
and theoretical analyses of non-IID impacts [7], [15].

* Resource constraints & communication costs: Many FL clients—mobile devices, low-power
IoT sensors, edge devices—have limited computation, memory, and bandwidth.
Communication-efficient training methods such as sparsified SGD [8], gradient compression
[26], adaptive client participation [60], and lightweight architectures for IoT [55] have been
extensively explored.

* Privacy & security risks: Although raw data stays local, gradients and model updates may leak
sensitive information, supporting attacks such as membership inference [11], [12] and GAN-
based leakage [13]. To mitigate these risks, researchers developed secure aggregation protocols
[3], differential privacy approaches [6], [31], [45], homomorphic-encryption-based FL [39], [48],
and defenses against poisoning and backdoor attacks [14], [71].

» Real-world deployment challenges: For FL to transition from academic study to practical
deployment (e.g., hospital networks, smart cities, industrial IoT), issues such as system
architecture, governance, regulatory compliance, personalization, and heterogeneous
infrastructure must be addressed. Surveys and system frameworks highlight these deployment
considerations [28], [50], [51], [53].
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This paper aims to provide a consolidated, up-to-date account of how the FL community tackled
these challenges between 2019 and 2024. We review advances in optimization, privacy,
compression, communication efficiency, personalization, and system design; summarize real-
world applications in healthcare and IoT; analyze trade-offs and gaps; and propose future
directions to enable more robust, scalable, and privacy-compliant deployments.

2. BACKGROUND AND FOUNDATIONS

Federated Learning (FL) emerged as a response to the growing inability to centralize sensitive
data generated across modern digital ecosystems. Traditional machine learning pipelines assume
that data can be freely collected and stored on a central server, but this assumption collapses in
real-world domains such as healthcare, finance, mobile devices, and large-scale IoT
deployments, where regulations and operational constraints prohibit large-scale data aggregation
[10], [17], [19]. FL reverses the centralized learning paradigm by sending the model to the data
rather than the data to the model. This decentralized training approach was formalized in early
works such as FedAvg [1], [9] and later expanded through large-scale mobile deployments [5],
[42], [43].

In this workflow, clients—whether hospitals, banks, smartphones, or sensors—perform local
training on private datasets and share only model updates. This enables collaborative learning
while maintaining data locality and reducing the risk of exposure [2], [10]. FL commonly
operates in two settings: cross-device FL, involving millions of highly resource-constrained and
intermittently connected devices [5], [27], and cross-silo FL, involving a small number of
reliable organizations with structured governance [41], [50]. Each setting carries distinct
assumptions, communication constraints, privacy requirements, and optimization needs that
shape system design [28], [51].

Despite its privacy-preserving intent, FL introduces significant technical challenges stemming
from real-world data and device heterogeneity. Client datasets are often non-IID, imbalanced,
and personalized, causing divergent gradient directions and unstable convergence—phenomena
collectively known as client drift [7], [15], [21], [23]. Devices in cross-device FL vary widely in
computation, memory, battery life, and network availability, requiring partial participation,
asynchronous updates, dynamic sampling, and lightweight model architectures [55], [60].
Communication quickly becomes a bottleneck because FL requires repeated rounds of
transmitting model parameters or gradients. Limited uplink bandwidth and large model sizes lead
to significant training delays, motivating research into compression strategies such as
quantization, sparsification, and pruning [8], [26], [80] as well as adaptive and communication-
efficient optimization [30], [35], [56].

To address these constraints, modern FL systems incorporate personalized models [40], [72],
hierarchical aggregation structures [29], and efficient client selection mechanisms that improve
scalability and robustness [60]. These innovations aim to stabilize convergence under non-IID
distributions while reducing both resource consumption and communication overhead.
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FL does not inherently guarantee privacy or security; instead, it requires dedicated mechanisms
to prevent leakage of sensitive information through transmitted gradients or model deltas.
Research has shown that model updates can expose private data through reconstruction,
inference, or GAN-based attacks [11]-[13]. Consequently, FL implementations integrate explicit
privacy-preserving mechanisms such as differential privacy (DP) [6], [31], [45], secure
aggregation [3], homomorphic encryption (HE) [39], [48], and batch-level or task-specific DP
techniques for NLP and other domains [32], [68]. Cross-silo deployments further demand strong
governance, auditability, and regulatory compliance to build trust between institutions [38], [50],
[53], [73]. Beyond privacy, FL systems must defend against a wide range of threats including
poisoning attacks, backdoor attacks, Byzantine failures, malicious clients, and colluding
adversaries [14], [22], [57], [58], [71]. Addressing these issues requires robust aggregation rules,
anomaly detection mechanisms, adversarially resilient optimization, and secure system-level
designs [31], [53], [78].

In summary, the foundations of FL rest on three interconnected pillars: distributed optimization,
privacy-preserving computation, and system engineering. Each pillar brings its own algorithmic
and operational challenges that must be addressed for FL to succeed in large-scale, real-world
deployments [2], [28], [51], [54].

Table 1: Comparison of Cross-Device and Cross-Silo Federated Learning

Feature / Dimension

Cross-Device FL

Cross-Silo FL

Millions of devices (phones,

Few institutions (hospitals,

Number of Clients wearables, [oT sensors) banks, companies)

. - Low, intermittent, . )
Client Reliability unpredictable High, stable, synchronized
Compute Capacity Limited (battery, CPU, High, institutional-grade

memory constraints)

SCrvers

Data Characteristics

Highly personalized,
extremely non-IID, small
datasets

Structured, moderate non-1ID,
larger datasets

Connectivity

Unstable, variable bandwidth

Stable, high-speed
connections

Participation Rate

Very low (1-10% per round)

High (often all participants
contribute)

Governance Requirements

Minimal, device-level policies

Strict auditability, compliance,
legal regulation

Use Cases

Mobile keyboards, voice
assistants, wearables, home
IoT

Healthcare imaging, financial
fraud detection, enterprise
collaboration

System Design Focus

Communication efficiency,
resource awareness, sampling

Privacy governance,
reliability, stronger security
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Figure 2: System overview of cross-device federated learning
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Table 2: Comparison of federated learning studies

Paper FL Literature review Privacy Applications Privacy
basics mechanism metrics
Centralized Decentralized NL Health TIo
P care T
Zhang etal. (2021) ¢ / X v/ o/ R
Khan et al. v X X X v / X
(2023)
Lietal. (2023a) v v v v/
Gabri- elli et al. v X v v X X X X
(2023)
Liu etal. (2024) v X v v X X X X
Sameera et al. v/ X v v X X X X
(2024)

3. FEDERATED LEARNING ARCHITECTURES

Federated learning architectures define how distributed clients interact, exchange model updates,
and collaboratively converge toward a global objective without sharing raw data. The
architectural structure largely determines communication efficiency, model accuracy, scalability,
and resilience to failures or adversarial behaviors. Building on the foundational principles of
distributed model training, FL architectures are commonly categorized into three primary
paradigms: centralized, decentralized, and hierarchical [28], [29], [51]. Each architecture reflects
a different coordination topology and is associated with distinct advantages, constraints, and

application suitability.

Federated learning enables multiple clients to collaboratively train models using their local data
while exchanging only model parameters, as shown in Fig. 1. This paradigm preserves data
privacy and supports learning across distributed, heterogeneous, and privacy-sensitive

ecosystems [1], [2], [10].
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Figure 3: A schematic diagram of federated learning

3.1 Categories of federated machine learning

Figure 2 illustrates the classification of FL based on three key aspects. First, depending on
system architecture, FL can be categorized into centralized and decentralized approaches. In
centralized FL, a single server orchestrates training using the client—server paradigm, selecting
clients, aggregating local updates, and redistributing global model parameters. This is the classic
synchronous architecture exemplified by FedAvg [1], [9], and widely deployed in mobile and
IoT ecosystems [5], [27]. In decentralized FL, there is no central server. Clients communicate
directly with each other, aggregating updates in a P2P fashion using gossip mechanisms or
blockchain-assisted coordination [29], [38]. Each client maintains a shared global model and
participates in distributed consensus, which eliminates reliance on a central authority.

Second, based on federation scale, FL distinguishes between cross-device and cross-silo settings.
Cross-device FL consists of massive numbers of mobile phones, wearables, or IoT devices with
highly varied processing capabilities and intermittent connectivity [5], [27], [55]. Cross-silo FL
includes a small set of stable, reliable institutions such as hospitals or banks, where devices
operate under strong governance and regulatory frameworks [19], [20], [41], [50]. As noted by
Gabrielli et al. (2023), cross-device FL must accommodate high device heterogeneity and low
participation rates, whereas cross-silo FL benefits from stronger coordination and infrastructure
support [51].
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Figure 4: Categories of federated learning
3.2 Centralized Federated Learning Architecture

The centralized architecture is the most widely deployed and conceptually straightforward FL
configuration. A single server coordinates client selection, initializes the model, aggregates
updates, and distributes global parameters [1], [9], [21]. Clients perform local training and return
model updates, which are aggregated typically via weighted averaging (FedAvg). This
architecture offers simplicity, predictable synchronization, efficient orchestration, and
compatibility with large-scale deployments such as mobile keyboards, wearables, and IoT
devices [5], [42], [43].

The central server can also enforce participation rules, validate client updates, maintain
metadata, and detect abnormal behavior, providing strong operational control [41], [50].
However, centralized FL suffers from single-point-of-failure risks; the server is a critical
component whose failure or compromise disrupts the entire system. Communication bottlenecks
arise when many clients attempt to upload updates simultaneously, limiting scalability in large
deployments [27], [55].

Moreover, relying on a central aggregator introduces trust and privacy concerns: although raw
data remain local, gradient updates can leak sensitive information through reconstruction or
inference attacks [11]-[13]. Therefore, centralized FL deployments commonly incorporate
differential privacy [6], [31], [45], secure aggregation [3], and homomorphic encryption [39],
[48]. To address bandwidth limitations, models may employ compression or sparsification
techniques [8], [26], [80].
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3.3 Decentralized Federated Learning Architecture

Decentralized FL eliminates reliance on a central server by enabling direct client-to-client
communication. Updates are exchanged using peer-to-peer protocols, gossip-based aggregation,
or blockchain-based consensus mechanisms [29], [38]. Each client maintains its own version of
the global model and synchronizes parameters with selected peers. This architecture improves
fault tolerance since no single entity controls or compromises the learning pipeline. It is
particularly suitable for edge IoT networks, vehicular systems, sensor grids, and distributed
industrial ecosystems where authority is distributed or connectivity is dynamic [27], [52].

Blockchain-enhanced decentralized FL further strengthens transparency and verifiability by
maintaining immutable update logs and supporting secure, auditable aggregation [38], [73].
Clustered topologies, peer selection strategies, and cryptographic protocols enhance robustness
against adversarial manipulation [14], [31], [53].Nonetheless, fully decentralized FL is more
complex to manage. Achieving consensus among highly diverse participants requires
sophisticated algorithms that may increase communication cost. The absence of a central
coordinator can lead to inconsistent updates if peers exchange parameters asynchronously.
Gossip-based exchange reduces communication frequency but introduces slower convergence. In
systems with significant data heterogeneity, clients may diverge from the global objective if peer
selection is suboptimal. Despite these challenges, decentralized FL remains a powerful
architecture for privacy-preserving and resilient learning systems.
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Figure S: Network Structure of Federated Learning
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3.4 Federated Learning Workflow
Federated learning systems typically follow a four-step iterative training cycle [1], [9], [21]:

(1) Client Selection: The server or coordinator identifies eligible clients based on availability,
network quality, computational resources, and policy constraints. Cross-device FL typically
selects a small subset of clients due to limited device availability, whereas cross-silo FL often
involves full participation [41], [50].

(2) Model Broadcasting: The global model is initialized and distributed to clients. Initial weights
may be random or pre-trained using public or weakly-private data [10], [42], [43].

(3) Local Training: Clients train the model using their private datasets and compute gradient
updates or weight deltas. Local training is affected by data heterogeneity, resource constraints,
and personalization needs [7], [15], [72].

(4) Aggregation and Update: The server aggregates client updates—most commonly via
weighted averaging, but many adaptive and robust aggregation strategies exist (e.g., FedProx
[21], SCAFFOLD [23], adaptive optimizers [30], and robust aggregators [57], [58], [71]). The
updated global model is then redistributed to clients for the next round.

4. PRIVACY MECHANISMS IN FEDERATED LEARNING

Privacy protection lies at the core of federated learning because, although raw data remain on-
device or within institutional boundaries, model updates can still leak sensitive information.
Numerous studies have demonstrated that gradients and shared model parameters can reveal
private data through inference, reconstruction, or generative attacks [11]-[13]. As a result,
modern FL systems integrate multiple privacy techniques—information obfuscation, encrypted
computation, and trustworthy aggregation—to create a layered and defense-in-depth privacy
strategy [2], [31], [45], [53].

4.1 Differential Privacy (DP)

Differential Privacy (DP) protects individuals by adding calibrated statistical noise to model
updates so that the presence or absence of any specific data point minimally affects the final
model output [6]. In FL, DP is most commonly applied on the client side, ensuring that the
update is privacy-preserving before it leaves the device. DP optimization must account for
privacy budgets, dataset sizes, and training frequency, balancing the trade-off between privacy
and model utility [31], [32].

Advanced techniques extend DP for domain-specific tasks (e.g., NLP) or batch-level training to
maintain model performance while enhancing anonymity [32], [68]. However, stronger privacy
budgets can degrade model accuracy, requiring adaptive noise scaling strategies depending on
device constraints and data heterogeneity.
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4.2 Secure Aggregation

Secure aggregation ensures that the server cannot see any individual client update; instead, it
only receives the aggregated sum of all contributions. The seminal secure aggregation protocol
proposed by Bonawitz et al. masks client updates with pairwise random values that cancel out
during aggregation, enabling confidentiality even in large-scale deployments [3].

This method is particularly effective in cross-device environments with many participants
because individual masked updates reveal no meaningful information even if partially
compromised. Secure aggregation provides strong defenses against insider threats on the server,
preventing fine-grained analysis or reconstruction of client-specific gradients [31], [53].

4.3 Homomorphic Encryption (HE)

Homomorphic Encryption (HE) enables computation directly on encrypted data. In FL, clients
encrypt their updates using HE schemes before transmitting them to the server, which then
aggregates encrypted values without learning their contents [39]. Only a designated key holder—
or a secure enclave—decrypts the aggregated model.

Although HE offers strong privacy guarantees, it introduces computational overhead, especially
in mobile and IoT devices. Research shows that practical FL deployments often rely on
optimized or partially homomorphic variants to maintain energy efficiency while preserving
security [48].

4.4 Trusted Execution Environments (TEE)

Trusted Execution Environments (TEEs) provide hardware-isolated regions where sensitive
computations can occur securely. Instead of encrypting every client update, a TEE allows the
aggregation process to take place within a secure hardware enclave, protecting intermediate
states from external access [53], [73]. TEEs offer high computational speed compared with
heavy cryptographic methods; however, they depend on specialized hardware, raise trust
assumptions, and may be vulnerable to hardware-level side-channel attacks.

4.5 Hybrid Techniques

Modern federated systems increasingly adopt hybrid privacy approaches—combining DP, secure
aggregation, HE, and TEEs—to balance computational cost with strong privacy guarantees.
Studies emphasize that multi-layered mechanisms significantly reduce leakage risks, provide
resilience against multiple attack vectors, and maintain acceptable model utility in large-scale
deployments [31], [53], [54]. These hybrid designs represent the current trend in privacy-
preserving FL, especially in highly regulated domains such as healthcare, smart cities, and
finance [18], [19], [49].
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5. MODEL COMPRESSION AND COMMUNICATION EFFICIENCY

Federated learning repeatedly exchanges model updates across distributed clients, making
communication one of the most expensive components of the entire training pipeline. A large
body of work in distributed optimization and FL demonstrates that reducing update size—
through sparsification, quantization, pruning, or alternative representations—significantly
improves scalability, training speed, and energy efficiency [8], [26], [80]. Communication
efficiency is especially critical in cross-device FL, where clients often have limited bandwidth,
intermittent connectivity, and resource constraints [27], [55].

5.1 Quantization

Quantization compresses model updates by reducing numerical precision. Transforming 32-bit
floating-point gradients into lower-bit representations (e.g., 8-bit or 4-bit) can cut communication
cost by more than half with minimal impact on accuracy [26]. Dynamic and adaptive
quantization techniques, introduced in communication-efficient FL studies, adjust precision
based on gradient importance or update variance to help maintain convergence even under severe
non-IID conditions [8], [56].

5.2 Pruning and Structured Compression
Pruning removes parameters that contribute little to model performance.

* Unstructured pruning eliminates individual weights, providing high compression but requiring
specialized hardware to efficiently support sparse matrix operations.

* Structured pruning removes entire channels, filters, or blocks, resulting in models that are
significantly smaller and optimized for deployment on edge devices and IoT systems [27], [55].

Compression surveys in FL highlight pruning as an essential strategy for reducing both
communication overhead and client-side computation, especially when training deep models
across resource-constrained devices [80].

5.3 Gradient Sparsification

Gradient sparsification transmits only the most informative updates—such as top-K gradients—
or accumulates residuals to be sent later, drastically reducing the number of values
communicated per round. Pioneering work in sparsified SGD shows that aggressively dropping
gradients maintains accuracy while reducing bandwidth consumption by orders of magnitude [8].
Federated compression surveys confirm that sparsification is one of the most effective
communication-effectiveness methods for large-scale FL with thousands of clients [80].

5.4 Knowledge Distillation

Knowledge distillation enables clients to exchange only prediction probabilities or logits instead
of full model parameters. In FL, this can significantly shrink communication cost because
lightweight student models learn from a shared or centralized teacher model without exchanging
high-dimensional gradients. Early FL-specific distillation methods such as FedKD demonstrate
competitive model performance while reducing communication size substantially [46].
Distillation is particularly valuable for IoT and edge devices with limited compute and memory
resources [27], [55].
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5.5 Low-Rank Approximation

Low-rank approximation compresses large matrices—such as weight matrices in fully connected
layers—into products of smaller matrices. This reduces the number of parameters transmitted
and the computation required per update. Communication-efficient learning studies and FL
compression surveys highlight matrix factorization as a powerful technique for reducing model
footprint without significantly affecting expressiveness [80]. Low-rank decompositions remain
especially beneficial in bandwidth-constrained or latency-sensitive FL environments.

6. REAL-WORLD APPLICATIONS OF FEDERATED LEARNING

Federated learning has progressed from theoretical research to deployment in real-world
environments where privacy, distributed data, and regulatory constraints converge. Its ability to
train models collaboratively without sharing raw data makes it uniquely suited for domains such
as healthcare, [oT, edge computing, transportation, and wearable technologies [17], [19], [27],
[33], [49].

6.1 Remote Patient Monitoring and Wearables

Wearable devices continuously capture personal biomedical signals such as heart rate,
respiration, stress patterns, and sleep quality. Because this information is deeply sensitive,
centralized data aggregation raises significant privacy concerns. Federated learning allows
wearables to collaboratively improve models for arrhythmia detection, fall prediction, and
personalized health insights while keeping raw sensor data on-device [34], [37], [62], [77].
Studies in FL for mobile and wearable platforms show that on-device training preserves user
privacy, reduces network usage, and enhances personalized model performance [5], [34].

6.2 Industrial IoT

Industrial IoT environments rely on large numbers of distributed sensors to monitor machine
vibration, temperature, pressure, production metrics, and energy consumption. Sharing this
information with cloud servers may leak proprietary manufacturing processes. Federated
learning enables local sensors and edge devices to collaboratively train models for predictive
maintenance, equipment diagnostics, anomaly detection, and quality assurance without exposing
confidential data [17], [27], [52], [63].

Federated approaches in smart factories and industrial automation have been shown to reduce
downtime, improve fault detection, and enhance reliability by enabling continuous learning at the
edge [24], [47], [69].

6.3 Healthcare and Medical Diagnostics

Healthcare organizations must comply with strict regulatory standards that prohibit the sharing of
patient records. However, collaboration across institutions is essential for building accurate and
generalizable medical models. FL enables hospitals to jointly train models for medical imaging,

disease prediction, and clinical decision support without exchanging sensitive health data [18],
[19], [20], [33], [76].

Cross-hospital FL studies demonstrate improvements in diagnostic accuracy, robustness across
demographic distributions, and compliance with privacy regulations while maintaining high-
quality clinical performance [18], [20], [33].
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Figure 6: Healthcare application system based on FL

6.4 Edge-Based Transportation Systems

Modern vehicles generate vast amounts of data through cameras, radar, LiDAR, GPS, and
onboard diagnostics. Sending raw sensory data to centralized servers raises safety, privacy, and
bandwidth concerns. Federated learning allows vehicles and roadside edge units to
collaboratively train perception, navigation, and traffic prediction models without exposing raw
driving data [25], [70], [75].

FL-based transportation systems support real-time traffic flow prediction, autonomous driving
enhancements, and environment understanding, while keeping sensitive driving traces confined
to the vehicle [25], [75].

7. CHALLENGES AND OPEN PROBLEMS
Even with major advancements, federated learning (FL) continues to face significant obstacles
before it can be reliably deployed at scale. These challenges stem from real-world system

constraints, heterogeneous data, security vulnerabilities, and privacy risks that must be addressed
to ensure stable and trustworthy FL deployments [2], [28], [51], [53].
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7.1 Heterogeneity of Data and System

Federated learning operates across highly diverse devices and organizations that differ in
computation, energy capacity, network bandwidth, storage, and availability. This system
heterogeneity causes uneven participation, stragglers, variable training speeds, and inconsistent
contributions to the global model [5], [27], [41], [55].

Data heterogeneity—also known as statistical heterogeneity—creates even greater challenges.
Clients generate data of different sizes, formats, distributions, and contexts. Such non-IID
variability leads to divergent gradient updates, training instability, biased global models, and
difficulties in convergence [7], [15], [21], [23], [36], [65]. These differences can cause the model
to overfit to dominant or frequently participating clients.

7.2 Data Availability

In large-scale FL systems, client participation is voluntary and conditional. Devices must be
powered, connected, idle, and willing to contribute. This leads to unpredictable data availability,
with many clients frequently offline or inactive [5], [41], [55]. As a result, only a small and
potentially non-representative subset of clients participates in each training round, reducing
diversity and weakening the generalization ability of the global model. Dynamic client sampling
and availability-aware scheduling remain open research challenges [60].

7.3 Data Distribution (Non-1ID Data)

FL inherently faces non-IID data distributions, as each client collects data from unique contexts
and user behaviors. Labels, features, and sample frequencies differ across clients, causing
conflicts between local objectives and the global optimization goal [7], [15], [21], [23], [36].

Consequences include:

* slower convergence,

* unstable model updates,

* client drift,

* biased or unfair global models,

* reduced generalization across user populations.

A wide range of methods—such as FedProx, SCAFFOLD, FedBN, FedAlign, and personalized
FL—attempt to mitigate these issues, but no universal solution has emerged [21], [23], [36],
[65], [72].

7.4 Communication Overhead

FL requires continuous communication of model parameters or gradients between clients and
servers, creating significant bandwidth, energy, and latency constraints. Deep learning models
often contain millions of parameters, making communication the primary bottleneck [1], [8],
[26], [80].

As the number of clients grows, communication demands escalate rapidly. Low-bandwidth
networks, intermittent connectivity, and power-constrained devices worsen the problem.
Research in compression (quantization, pruning, sparsification), adaptive communication
schedules, and client selection aims to reduce this burden [26], [8], [35], [56], [60].
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7.5 Security Issues

Although FL prevents raw data sharing, the system remains vulnerable to a variety of security
threats. Because the server cannot easily verify the correctness or intent of client updates,
adversaries may perform:

* poisoning attacks, injecting malicious gradients to corrupt or manipulate the global model [14],
[57], [58], [71]

* backdoor attacks, embedding hidden behaviors into the model during training [14]

* Byzantine failures, where compromised clients send arbitrary or adversarial updates [57], [58]

» model manipulation attacks, where attackers interfere with the update or aggregation process
[31], [53]

In decentralized FL architectures, the attack surface expands further, as there is no central
authority to monitor or validate updates [29], [38]. Balancing strong security with computation
efficiency remains an open challenge.

7.6 Privacy Protection

Even though data remain local, model updates may leak sensitive information through model
inversion, membership inference, or gradient reconstruction attacks [11], [12], [13]. Thus,
privacy protection remains essential. Changes in model details might reveal user habits or even
allow reconstructing original data through methods like model inversion or membership checks.
To guard against this, techniques such as differential privacy, secure multi-party computation,
homomorphic encryption, or trusted hardware must be integrated into the system.
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8. FUTURE DIRECTIONS

Figure 8 illustrates how federated learning can enhance online learning, resource optimization,
and privacy-preserving data exchange in smart buildings by enabling localized model training.
This highlights FL’s ability to manage diverse, continuous IoT data streams efficiently while
reducing privacy risks by keeping raw data on-device [17], [27], [49], [52]. FL also aligns
naturally with digital twin systems that rely on privacy-sensitive, cross-device collaboration [67].
However, several challenges must be addressed—such as limited communication capacity, the
need for differential privacy (DP), encryption, and robustness to varying data distributions—
before such systems can scale effectively [26], [31], [45], [47], [55].

Future FL deployments in smart environments will require thoughtful system design to ensure

scalability through efficient communication, adaptive learning strategies, and strong privacy-
preserving mechanisms.

Federated Learning Future Directions
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Figure 8: Future FL Directions

8.1 Personalized Federated Learning

A major direction for FL is personalized federated learning, which aims to produce client-
specific models rather than a single global model. Personalization techniques include:

e Personalization layers [40]
e Clustered or group-based personalization [44]
e Meta-learning and adaptive optimization [30], [72]

Personalized FL mitigates non-IID challenges by tailoring models to individual user preferences
and data distributions, leading to greater accuracy and fairness across clients [7], [23], [36], [65].
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8.2 Federated Learning Without Central Servers

Decentralized FL eliminates central servers entirely. Clients exchange updates peer-to-peer or
through consensus mechanisms inspired by blockchain technology [29], [38], [73]. This direction
aims to: improve resilience to single-point failures, enhance trust in multi-stakeholder
environments, enable FL in highly dynamic edge and IoT networks [52] Decentralized
architectures will be crucial for applications where no single entity can or should control the
entire learning process.

8.3 Unified Privacy-Performance Frameworks
Future FL systems must strike an optimal balance between privacy guarantees and model
performance. Research trends point toward unified, layered privacy frameworks that combine:

e Differential Privacy (client- or server-side) [6], [31], [45], [68]
e Secure Aggregation [3]

e Homomorphic Encryption [39], [48]

e Trusted Execution Environments [53], [73]

Hybrid designs that automatically adjust privacy levels based on model sensitivity, device
capacity, and task requirements are expected to become standard in large-scale deployments
[54].

8.4 Ultra-Light FL Models for Micro-IoT

As federated learning expands into micro-loT environments—smart homes, environmental
sensors, wearables, and embedded medical systems—models must be extremely energy-efficient,
low-memory, and communication-aware [55], [62], [77]. Techniques such as: lightweight
architectures, aggressive compression [26], [80], distillation-based FL [46], energy-aware
learning [47], [69] will enable FL on tiny edge devices with milliwatt-level power budgets.

8.5 FL in 5G/6G Edge Networks

Next-generation networks will dramatically enhance FL’s potential. 5G and 6G provide ultra-low
latency, high bandwidth, and massive device connectivity—ideal conditions for real-time
collaborative learning [24], [70], [79]. These improvements will enable FL in: autonomous
driving and intelligent transportation [25], [70], [75], remote and robotic healthcare [18], [62],
augmented/virtual reality and edge intelligence [24], [79] Future communication-learning
integration will allow FL systems to adapt dynamically to network constraints, enabling
continuous, real-time model improvement across billions of devices.
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