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Abstract:  In this study, novel criteria for both asymptotic and exponential stability within a hybrid learning-based 
adaptive neural control framework are presented. These necessary and sufficient conditions are employed to 
adaptively tune the learning rates of the Neural Model (NM) and the Neural Controller (NC), thereby guaranteeing 
the stability of the indirect adaptive neural control system. Theoretical analysis together with simulation outcomes 
confirm the efficiency and robustness of the proposed adaptive control.    
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1. Introduction 

The design of adaptive control systems has been a major focus of research over the past decades. Various advanced 
adaptive strategies, including sliding mode control, robust adaptive control, backstepping, and decentralized 
control, have been developed to enhance control system performance [1–4]. Due to their universal approximation 
capabilities, neural networks have also been widely applied in the adaptive control of nonlinear systems. Adaptive 
neural controllers are generally classified into two main approaches. Direct Adaptive Control estimates the 
controller parameters directly, while Indirect Adaptive Control first adjusts the model parameters and then tunes 
the controller parameters [5–19]. A typical neural network-based control scheme employs multilayer feedforward 
networks trained using the well-known backpropagation (BP) algorithm, which relies on gradient descent 
optimization. Despite its popularity, the standard BP algorithm and its variants exhibit limitations, such as slow 
convergence and potential instability, which can hinder global convergence. To address these issues, numerous 
studies have proposed adaptive neural control methods grounded in Lyapunov stability theory [20–27]. These 
approaches derive adaptive laws for updating network weights based on a quadratic Lyapunov function, ensuring 
the stability of the controlled system. This paper extends prior work by investigating the stability of a hybrid 
learning-based indirect adaptive neural control scheme, supported by theoretical analysis and simulation studies. 
The proposed scheme employs two neural networks: a neural model (NM) for system identification and a neural 
controller (NC) for control. Using the Lyapunov synthesis approach, the parameters of both networks are tuned 
online via a hybrid learning algorithm that combines the Kohonen rule with gradient descent, integrating the 
strengths of both methods. Furthermore, two strategies are proposed for selecting appropriate learning rates for 
NM and NC, ensuring the stability of the indirect adaptive control scheme. 

The paper is structured as follows: Section 2 describes the design of the indirect adaptive neural network controller. 
Sections 3 and 4 present two methods for adjusting the learning rates of NM and NC to guarantee stability. 
Simulation results are provided in Section 5, followed by conclusions and references in Sections 6 and 7. 

2. Structure of the Indirect Adaptive Control Approach 
 

2.1. Description 

The indirect adaptive control scheme employed in this study, illustrated in Figure 1, consists of two neural 
networks: a neural model (NM) and a neural controller (NC). In this framework, the control signal is produced by 
the NC. The main objective of the control problem is to compute an input for the plant that ensures the system 
output closely tracks the desired reference signal.    
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Considered a nonlinear system described by: 

     p p p p a by (k 1) F y (k), y (k 1), , y (k n 1), u(k), u(k 1), , u(k n 1)                             (1) 

Where py  is the system output, u  is the control input, an  and bn  denote the output and input orders, 

respectively. The function F represents the system’s nonlinear dynamics, and the term k  
accounts for the system 

time delay.  

2.2.The hybrid training algorithm 

Both the neural model and the neural controller are implemented using three-layer neural networks (Figures 2 and 
3). The networks are trained online with a hybrid learning algorithm that combines the Kohonen rule [29] and 
gradient descent [28], leveraging the fast self-organization of Kohonen learning with the precise weight adjustment 
of gradient descent. All neurons employ the sigmoid activation function, ensuring smooth nonlinear mapping 
capabilities. This hybrid approach improves convergence speed and stability compared to using gradient descent 
alone 
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Figure 2. Neural controller. 
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Figure.1. Shematic of Indirect adaptive control system. 

 

Figure 3. Neural model. 

 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 36 ISSUE 1 2026

PAGE NO: 155



The online hybrid learning procedure for the two neural networks can be summarized as follows: 

Let  cX  denote the input vector of Neural Controller (NC):  
c c c

1 n n d p p a ba b
X (k) x (k ), , x (k ) y (k 1), y (k ), , y (k n 1), u (k 1), ..., u(k n 1)

                  (2)   

First, the input vector is generated. Then the index 
cg  of the winning neuron is identified using the minimum 

distance Euclidean criterion: 

              

   c c c c
jjg argmin X W ,     j 1 p    

                  
                   (3) 

  where 
cp  indiates the total number of neurons contained in hidden layer of the neural controller 

After determining the winning neuron, a corresponding neighborhood region is defined. The output of the neural 

controller is then obtained according to the following expression: 

          c c c c c
jl ij i j l

c ij V

u(k) f W (k). f W (k).x (k) (k)


   
           
                                                               (4) 

Here, cV  defines the neighborhood region  surrounding the winning neuron
cg , while c

ijW  and c
jlW  correspond to 

the synaptic the weights of  the hidden and output layers .the computed control signal u  is subsequently fed into  
the process.  

Let  m m m
1 n n p p a ba b

X (k) x (k), , x (k) y (k), , y (k n 1), u(k), u(k n 1)
            

               (5)           
 

Similarly, the input 
mX  is constructed, after which the index 

mg  of the winning neuron is selected according to 

the minimum distance Euclidean criterion: 

    m m m m
jjg argmin X W ,     j 1 p                                                                         (6)   

Here 
mp  indicates the total number of neurons in the hidden layer of the Neural Model (NM). 

Subsequently, a neighborhood surrounding the winning neuron is determined, and the neural network model output 

is obtained according to the following expression: 

m m m m m
m jl ij i j l

m ij V

y (k 1) f W (k) f W (k).x (k) (k)    


   
            
   (7) 

In this context, mV  specifies  the neighborhood region surrounding the winning neuron 
mg , and m

ijW   and m
jlW  

correspond to the synaptic weights of the hidden and output layers. 

The error function for neural model, which is to be minimized, is expressed as follows: 

     
22

m m p m

1 1
E e y (k 1) y (k 1)

2 2
                                                                                         (8) 

In the case of neural controller, the error function to be minimized is expressed as follows: 

               
22

c c d p

1 1
E e y (k 1) y (k 1)

2 2
                                                                                         (9) 

The NM weights are then updates by equation (10) and (11).  

Update the set of neighborhood neurons  m m
ijW V  using the Kohonen learning rule:  

m m m
ij 1m i ijW (k ) (k ).(x W (k ))                                                                                                                 (10) 
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1m (k)  is the learning rate at any time instant k.  

Update the weights  m m
jlW V   using gradient descent method:  

   

m m
jl 2m m

jl

' m m m m m
2m m p jl ij i ij i

mj V

E (w)
W (k) (k).

W

           = (k) y (k 1) y (k 1) .f W .f ( W .x ) f W .x



  



 
       
 
 
  

                   (11)    

2m(k)  is the learning rate at any instant time k.  

The NC weights are then updates by equation (12) and (13).  

Modify the set of neighborhood neurons c c
ijW V  by the Kohonen learning rule:  

 
c c c

ij 1c i ijW (k ) (k ).( x W (k ))                                                                                                                    (12) 

 

1c (k )  is the learning rate at any instant time k.  

Calculate the weights  c c
jlW V   using gradient descent method:  

 c
jl 2 c m d c

lj

u (k )
W (k ) . y (k 1) y (k 1) J (k )

W (k 1)


     

 
                   (13) 

2c (k)  is the learning rate at any instant time k. . 

 where    c c
ij ic

cjl j V

u(k)
u(k) (1 u(k)) f W (k).x

W (k 1)


 
    
    
                                                                             (14)                                   

Moreover J  in (13) is defined as:                                                                      

    m ' m m mm
m m jl ij i ij

mj V

y (k 1)
J(k) y . 1 y .W .f W .x .W

u(k)


 
  


                                                              (15) 

3. First Stability Approach   

In this section, theorems and relevant proofs are presented to verify the Lyabunov Asmptotic Stability(LAS) 
convergence : 

Theoreme 3.1 : 

Let  1m   and   2m  are the learning rates for the tuning parameters of NM. Then the convergence is guaranted 

if the learning rates are chosen as :  

  
 

1 m
1m 1m,maxT m m

1 i ij

2. .e
min ,

P . x W

 
   
  

 and   
 

2
2m 2m,max2

2

2.
min ,

P

 
   

 
 

                                      (16)                               

Where s   and sm ,max are two predefined positive constants satisfying s0 1     and sm,max smmax( )   , 

respectively.  

s 1  and s 2 denote the hidden layer and the output layer, respectively. 

         

 

 

 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 36 ISSUE 1 2026

PAGE NO: 157



Proof of theorem 3.1 : 

Define the Lyapunov function canditate : 

 
22

m m m p m

1 1
V (k ) E (k ) e (k ) y (k ) y (k )

2 2
                                                                                       (17)              

Change of Lyapunov fonction is : 
 

 2 2
m m m

1
V (k ) e (k 1) e (k )

2
     

                                                                                                               (18)        

From  
m m m

e (k 1) e (k ) e (k )                                                                                                                        (19) 

Then  
m m m m

1
V (k) e (k) e (k) e (k)

2

 
      

                                                                                            (20) 

The change identification error with respect to the hidden layer is computed as : 

    
T

m T m mm
1m ij 1m 1 i ijm

ij

e
e (k) W = P x W (k)

W

 
           

                                                                    (21) 

Where      m ' m mm
1 m m jl ij i im

mij j V

y
P = y 1 y W f W .x x

W


 
      
   
                                                            (22)                                           

Using (21) in (20), we have  

 
 

2
T m m m

1m 1m 1 i ij T m m
1m 1 i ij

2e1
V (k)= .P . x W 1

2 .P . x W

 
              

                                                      (23) 

 

The negative definiteness of  m1V (k) 0   as long as : 

 
m

1m T m m
1 i ij

2e

P . x W
 


                                                                                                                                                  (24) 

The change identification error with respect to the output layer is computed as : 

 
T

m 2m
2m jl 2 m m 2m

jl

e
e (k) W = e (k).P

W

 
         

                                                                                        (25) 

                                                       

Where     m mm
2 m m ij im

mjl j V

y
P y 1 y f ( W .x )

W



    


                                                                               (26)             

Using (25) in (20), we have  

2 2 2
2m 2m m 2 2m 2

1
V (k) e (k) (P ) 1 (P )

2

 
         

                                                                                   (27) 

The negative definiteness of  m 2V (k) 0   can be ensured as long as : 

 
2

2 m 2

1
1 P 0

2
                                                                                                                                                          (28)                                    

Then     

 
2 m 2

2

2

P
                                                                                                                                                       (29) 

This concludes the proof of Theorem 3.1. 
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Theoreme 3.2 : 

Let  1c   and   2c  are the learning rates for the tuning parameters of NC. Then the convergence is guaranted 

if the learning rates are chosen as :  
 

   
1 c

1c c1,maxT c c
ij i ij

2 .e
min ,

J Q x W

 
   

    

  and  

 
2

2c 2c ,max2

jl

2
min ,

J Q

 
   

  

                              (30) 

Where s   and sm ,max are two predefined positive constants satisfying s0 1     and sm,max smmax( )   , 

respectively, s 1, 2 . 

 

Proof of theorem 3.2 : 

 

Define the Lyapunov function canditate : 

  
22

c c c d m

1 1
V (k ) E (k ) e (k ) y (k ) y (k )

2 2
                                                                                          (31)              

Using the similar methods, we can obtain 

c c c c

1
V (k) e (k) e (k) e (k)

2

 
      

                                                                                                        (32) 

The change tracking error with respect to the hidden layer is computed as : 

   
T

Tc c cc
1c ij ij 1c i ijc

ij

e
e (k ) . W J.Q . . x W

W

 
         

                       
ci, j V                                   (33)                                                                     

   c ' c c c
ij jl ij i ic

cij j V

u
Q u 1 u W f W .x x

W


  
        

     
                                                                               (34) 

Using (33) in (32), we have  

    
   

2T c c c
1c ij 1c i ij T c c

ij 1c i ij

2.e1
V (k)= J Q . x W . 1

2 J Q x W

 
                  

                                    (35) 

 

The negative definiteness of  c1V (k) 0   as long as : 

 

   
c

T c c
ij 1c i ij

2.e
1 0

J.Q . x W

 
  
   

                                                                                                                              (36) 

 

Then   

   
c

1c T c c
ij i ij

2.e

J.Q . x W
 


                                                                                                              (37) 

 

The change tracking error with respect to the output layer is computed as : 

 

 
T

2cc
2c jl 2c c jlc

jl

e
e (k) W e J Q

W

 
           

                                                                                       (38) 

c c
jl ij ic

cjl j V

u (k )
Q u (k ) (1 u (k )) f W (k ).x

W (k 1)


 
     
    
                                                                       (39) 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 36 ISSUE 1 2026

PAGE NO: 159



 

Using (38) in (32), we have  

   
2 2

2

2 c 2 c c jl 2 c jl

1
V (k ) e J Q 1 J Q

2

 
             

                                                                                        (40) 

The negative definiteness of  c2V (k) 0   as long as : 

 
2

2 c jl

1
1 J Q 0

2
                                                                                                                                         (41) 

Then      

 
2c 2

jl

2

J Q
 



                                                                                                                                  (42) 

The proof of theorem 3.2 is completed.    

4. Second Stability Approach 

In this section, theorems and relevant proofs are presented to verify the Lyabunov Exponentiel Stability(LES) 
convergence :  
 

Theoreme 4.1 : 

Let  1m   and   2m  are the learning rates for the tuning parameters of NM. Then the convergence is guaranted 

if the learning rates are chosen as :  
 

 
 

 
 

1 m 1 m

1mT m m T m m
1 i ij 1 i ij

1 (1 ) e 1 (1 ) e

P x W (k) P x W (k)

     
  

   
   and    2 2

2 m2 2
2 2

1 (1 ) 1 (1 )

P P

     
           (43) 

 Where   s0 1   , s 1, 2  

 

Proof of theorem 4.1 : 

 

We considere the function  Lyabunov and its differential satisfies the  following inequality :  

 

m s mV (k ) V (k )      , s 1, 2                                                                                                                   (44)              

Then 
m s mV (k 1) ( 1) V (k ) 0                                                                                                                 (45) 

Using(17), Equation (45) can be expressed as :  

2 2
m s m

1 1
e (k 1) ( 1) e (k) 0

2 2

 
      

 
                                                                                                           (46) 

Then the (46) can be rewritten as 
2 2
m m m s me (k) 2 e (k) e (k) e (k) 0                                                                                                              (47) 

The change identification error with respect to the hidden layer is computed as in Eq. (21). 

Using (21) in (47), we obtain : 

 

   
22 T 2 m m T m m 2

1m 1 i ij 1m 1 i ij m 1 m(k) (P ) x W (k) 2 (k) P x W (k) .e e (k) 0                            (48) 

 

Then 

 
    

22
T m m 2 m 1 m

1 i ij 1m 1m 2T m m T m m
1 i ij 1 i ij

2 e (k) e (k)
P x W (k) ( ) 0

P x W (k) P x W (k)

 
                   

           49) 

Eq. (49) can be modified as follows : 
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   

2 2

m m
1m 1T m m T m m

1 i ij 1 i ij

e (k ) e (k )
(1 ). 0

P x W (k) P x W (k)

   
        

         

                                                      (50) 

 

The change identification error with respect to the output layer is computed as in Eq. (27). 

Using (27) in (47), we have : 

 
22 2 2 2

2 m m 2 2 m 2 m 2 me (k ) P 2 P e (k ) e (k ) 0                                                                                     (51) 

Eq. (51) can be modified as follows : 

 2 2
2m 2 2( .P 1) 0                                                                                                                                                   (52) 

The proof of theorem 4.1 is finished. 

 

Theoreme 4.2 : 

 

Let  1c   and   2c  are the learning rates for the tuning parameters of NC. Then the convergence is guaranted 

if the learning rates are chosen as :  
 

 
   

 
   

s c s c

1cT Tc c c c
ij i ij ij i ij

1 (1 ) e (k) 1 (1 ) e (k )

J Q x W J.Q x W

     
  

    
 and  s s

2c2 2 2 2
jl jl

1 1 1 1

Q J Q J

     
  

 
               (53) 

Where   s0 1   , s 1, 2  

 

Proof of theorem 4.2 : 

We considere the function  Lyabunov and its differential satisfies the  following inequality :  

 

c s cV (k ) V (k )                                                                                                                                          (54)              

Then  
c s cV (k 1) ( 1) V (k ) 0                                                                                                                   (55) 

 Using(31), Equation (55) can be expressed as :  

 2 2
c s c

1 1
e (k 1) ( 1) e (k ) 0

2 2

 
      

 
                                                                                                          (56) 

 Then the (56) can be rewritten as 
2 2
c c c s ce (k) 2 e (k) e (k) e (k) 0                                                                                                                    (57) 

The change identification error with respect to the hidden layer is computed as in Eq. (33). 

Using (33) in (57), we obtain  

        
2T Tc c c c 2

1c ij i ij ij 1c i ij c 1 cJ.Q x W 2 J Q (k ). x W e (k ) e (k ) 0                                  (58) 

     
        

22T 2c c c s c
ij i ij 1c 1cT 2c c T c c

ij i ij ij i ij

2 e (k) e (k)
J Q x W 0

J Q x W J Q x W

 
                      
 

  (59) 

The change identification error with respect to the output layer is computed as in Eq. (38). 

Using (38) in (57), we have : 

 
2 2 4 4 2 2 2 2
2 c c jl c jl 2c 2 ce (k) Q J 2 e (k ) Q J e (k) 0                                                                                        (60) 

Eq. (61) can be modified as follows : 
2 2 2

2c jl 2( Q J 1) 0                                                                                                                                                  (61) 

 

The proof of theorem 4.2 is finished. 
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5. Simulation Results  

This section presents two illustrative examples to validate the performance and stability of the proposed indirect 
adaptive neural network based on the hybrid learning algorithm. 

5.1. Example 1 

The nonlinear system under consideration is defined as follows [14]. 

 3

2

y(k)
y(k 1) A(k).u (k)

1 y (k)
  


 (62) 

where 
0

.k
A (k ) a .(1 sin( ))

100


                                                                       (63)       

For the purpose of trajectory tracking, the desired output is defined as a smooth multi-step signal. The 
architectures of the NM and NC each comprise two input neurons and a single output neuron, with initial 
synaptic weights randomly set within the interval [−2,2]. 

The parameters are chosen as: m c
0V V 5, a 0 .5   , 

1 2 1 20.9, 0.8, 0.8, 0.9         

1 m ,m ax 2 m ,m ax 1c ,m ax 2 c ,m ax0 .8, 0 .6 , 0 .6 , 0 .7         

Figure 4 (a) and Figure 4 (b) show the performance of the controller in example 1 by LAS_BP method and 
LAS_Hybrid method, respectively. 
Figure 5 and Figure 6  show the adaptive learning rates with theorem 3.1 and theorem 3.2 in example 1, respectively. 

Figure 7 (a) and Figure 7 (b) show the performance of the controller in example 1 by LES_BP method and 
LES_Hybrid method, respectively. 
Figure 8 and Figure 9  show the adaptive learning rates with theorem 4.1 and theorem 4.2 in example 1, respectively. 

5.2. Example 2  

The continuous stirred tank reactor (CSTR) under study can be modeled by a polynomial ARMA 
representation as given in [30].  

                3
0 1 2 3 4y(k 1) u(k) y(k) u (k) y(k 1)u(k 1)u(k)                                               (64) 

   
 The parameters are given by:  
   

0 1 20.558 0.538 0.116        
3 40 1 2 7 0 0 3 4. .       

In this study, y denotes the output of the process , while u  represents the dilution rate around the operating point. 

The control objective is to regulate y  through appropriate manipulating of u , and the system is excited by 

randomly varying input  within the prescribed amplitude range 0,1 .  

In this work, both the NC and NM are implemented with the same architecture, consisting of four input 
neurons and a single output neuron.  
The parameters are chosen as: m c

0V V 5, a 0 .5   , 
1 2 1 20 .9, 0 .8, 0 .8, 0 .9         

1m ,m ax 2 m ,m ax 1c ,m ax 2 c ,max0.8, 0.6, 0.6, 0.5         

Figure 10 (a) and Figure 10 (b) show the performance of the controller in example 2 by LES_BP method and 
LES_Hybrid method, respectively. 
Figure 11 and Figure 12  show the adaptive learning rates with theorem 4.1 and theorem 4.2 in example 2, 
respectively. 

Figure 13 (a) and Figure 13 (b) show the performance of the controller in example 2 by LAS_BP and LES_Hybrid 
algorithm, respectively. 

Figure 14 and Figure 15  show the adaptive learning rates with theorem 4.1 and theorem 4.2 in example 2, 
respectively. 
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5.3. Discussion and results 

The performance of the proposed hybrid learning-based indirect adaptive control system was evaluated through 
two sets of simulation examples. As illustrated in Figures 4(b)–7(b) and 10(b)–13(b), the system demonstrates 
satisfactory trajectory tracking, effectively following the desired reference signals. These results confirm the 
ability of the hybrid algorithm to maintain stability while achieving accurate tracking. Table 1 provides a 
comparison of error criteria and convergence rates across various stable learning approaches, highlighting that the 
hybrid algorithm delivers the best performance in terms of both tracking accuracy and convergence efficiency 

compared to the conventional backpropagation method. This improvement can be attributed to the integration of 
the Kohonen self-organizing rule with gradient descent, which enhances convergence speed and overall control 
robustness. Overall, the simulation results validate the effectiveness of the proposed control approach. The hybrid 
learning mechanism not only ensures the stability of the closed-loop system but also optimizes tracking accuracy 
and response speed, outperforming classical adaptive neural control methods. 

Table 1.  Comparative results of learning methods 

Examples 
Lyabunov Analysis 

Stable Learning 

Methods 
�E�

���

���

   CPU time (s) 

Example 1   

Asymptotic Stability    
LAS_BP 0.110 3.815 

LAS_Hybrid 0.070 2.251 

Exponential Stability LES_BP 0.118 3.509 

LES_Hybrid 0.060 2.917 

Example 2 

Asymptotic Stability    LAS_BP 0.091 3.735 

LAS_Hybrid 0.060 2.109 

Exponential Stability LES_BP 0.190 4.090 

LES_Hybrid 0.042 3.257 

6. CONCLUSION 
 
This paper investigates the stability of an indirect adaptive neural control scheme applied to nonlinear systems. 
The proposed control framework utilizes a multilayer neural network with online learning based on a hybrid 
algorithm for both system identification and control tasks. Furthermore, a stability analysis of the online hybrid 
learning algorithm is carried out using the Lyapunov synthesis method. As a result, sufficient conditions for 
asymptotic and exponential stability are derived by appropriately adjusting the adaptive learning rates of both the 
Neural Model and Neural Controller, ensuring the stability of the closed-loop adaptive system. Finally, two 
simulation studies are presented, along with comparative results, demonstrating effective tracking of the desired 
signals and confirming the stability of the closed-loop system through proper selection of learning rates for the 

neural networks. 
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Figure 4. Evolution of dy  and y  in example 1: (a) LAS_BP method and (b) LAS_Hybrid method. 
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Figure 5. Trajectories of  1m   and  2 m with theorem 3.1 in example 1 
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Figure 6. Trajectories of 1c   and 2c with theorem 3.2 in example 1 
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Figure 8. Trajectories of  1m   and  2 m with theorem 4.1 in example 1 
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Figure 9.Trajectories of  1c   and  1c with theorem 4.2 in example 1 

Figure 7. Evolution of dy  and 
dy  in  example 1: (a) LES_BP method and (b) LES_Hybrid method. 
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Figure 11. Trajectories of  1m   and  2 m with theorem 3.1 in example 2 
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Figure 12.Trajectories of  1c   and  1c with theorem 3.2 in example 2 

Figure 10. Evolution of dy  and 
dy  in example 2: (a) LAS_BP method and (b) LAS_Hybrid method. 
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Figure 14.Trajectories of  1m   and  2 m with theorem 4.1 in example 2 
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Figure 15.Trajectories of  1c   and  1c with theorem 4.2 in example 2 

Figure 13. Evolution of dy  and 
dy  in example 2: (a) LES_BP method and (b) LES_ Hybrid method. 
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