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Abstract: In this study, novel criteria for both asymptotic and exponential stability within a hybrid learning-based
adaptive neural control framework are presented. These necessary and sufficient conditions are employed to
adaptively tune the learning rates of the Neural Model (NM) and the Neural Controller (NC), thereby guaranteeing
the stability of the indirect adaptive neural control system. Theoretical analysis together with simulation outcomes
confirm the efficiency and robustness of the proposed adaptive control.
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1. Introduction

The design of adaptive control systems has been a major focus of research over the past decades. Various advanced
adaptive strategies, including sliding mode control, robust adaptive control, backstepping, and decentralized
control, have been developed to enhance control system performance [1—4]. Due to their universal approximation
capabilities, neural networks have also been widely applied in the adaptive control of nonlinear systems. Adaptive
neural controllers are generally classified into two main approaches. Direct Adaptive Control estimates the
controller parameters directly, while Indirect Adaptive Control first adjusts the model parameters and then tunes
the controller parameters [5—19]. A typical neural network-based control scheme employs multilayer feedforward
networks trained using the well-known backpropagation (BP) algorithm, which relies on gradient descent
optimization. Despite its popularity, the standard BP algorithm and its variants exhibit limitations, such as slow
convergence and potential instability, which can hinder global convergence. To address these issues, numerous
studies have proposed adaptive neural control methods grounded in Lyapunov stability theory [20-27]. These
approaches derive adaptive laws for updating network weights based on a quadratic Lyapunov function, ensuring
the stability of the controlled system. This paper extends prior work by investigating the stability of a hybrid
learning-based indirect adaptive neural control scheme, supported by theoretical analysis and simulation studies.
The proposed scheme employs two neural networks: a neural model (NM) for system identification and a neural
controller (NC) for control. Using the Lyapunov synthesis approach, the parameters of both networks are tuned
online via a hybrid learning algorithm that combines the Kohonen rule with gradient descent, integrating the
strengths of both methods. Furthermore, two strategies are proposed for selecting appropriate learning rates for
NM and NC, ensuring the stability of the indirect adaptive control scheme.

The paper is structured as follows: Section 2 describes the design of the indirect adaptive neural network controller.
Sections 3 and 4 present two methods for adjusting the learning rates of NM and NC to guarantee stability.
Simulation results are provided in Section 5, followed by conclusions and references in Sections 6 and 7.

2. Structure of the Indirect Adaptive Control Approach

2.1. Description

The indirect adaptive control scheme employed in this study, illustrated in Figure 1, consists of two neural
networks: a neural model (NM) and a neural controller (NC). In this framework, the control signal is produced by
the NC. The main objective of the control problem is to compute an input for the plant that ensures the system
output closely tracks the desired reference signal.
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Figure.1. Shematic of Indirect adaptive control system.

Considered a nonlinear system described by:
y,(k+1)= F[yp(k),yp(k =D,...,y,(k=n, +D,u(k),u(k =1),...,u(k —n, + 1)] ()
Where Y is the system output, U is the control input, n, and n, denote the output and input orders,

respectively. The function F represents the system’s nonlinear dynamics, and the term k accounts for the system
time delay.

2.2.The hybrid training algorithm

Both the neural model and the neural controller are implemented using three-layer neural networks (Figures 2 and
3). The networks are trained online with a hybrid learning algorithm that combines the Kohonen rule [29] and
gradient descent [28], leveraging the fast self-organization of Kohonen learning with the precise weight adjustment
of gradient descent. All neurons employ the sigmoid activation function, ensuring smooth nonlinear mapping
capabilities. This hybrid approach improves convergence speed and stability compared to using gradient descent
alone
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Figure 2. Neural controller. Figure 3. Neural model.
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The online hybrid learning procedure for the two neural networks can be summarized as follows:
Let X ¢ denote the input vector of Neural Controller (NC):
X (k) = [ %7 (K)o, X5y ()] = [ ya(k 41,7, (K)o v, (k=n 4 Dyu(k =1),utk =0, +1) ] )

First, the input vector is generated. Then the index g° of the winning neuron is identified using the minimum
distance Euclidean criterion:

g‘ =argmin, {HXC - Wy }, Vje {1---p°} 3)

where p° indiates the total number of neurons contained in hidden layer of the neural controller

After determining the winning neuron, a corresponding neighborhood region is defined. The output of the neural
controller is then obtained according to the following expression:

uk)="f| > Wf,(k).{f(z Wi (k).x§ + ej(k)ﬂ +0°(k) 4)

jev®

Here, V¢ defines the neighborhood region surrounding the winning neuron g°, while WijC and chl correspond to

the synaptic the weights of the hidden and output layers .the computed control signal U is subsequently fed into
the process.

Let X™ (k)= [xml(k),... XD (k)] =[y,(®)....y,(k=n, + D,u(k),...u(k =n, +1)] )

Similarly, the input X" is constructed, after which the index g™ of the winning neuron is selected according to
the minimum distance Euclidean criterion:

g" =argmin, {HX“‘ -W }, Vje {1---pm} (6)

Here p™ indicates the total number of neurons in the hidden layer of the Neural Model (NM).

Subsequently, a neighborhood surrounding the winning neuron is determined, and the neural network model output
is obtained according to the following expression:

y, (k+1)= f[ > Wj’ln(k)[f(z W (k)X + ej.n(k)ﬂ + ef"(k)] 7

jevm

In this context, V" specifies the neighborhood region surrounding the winning neuron g™ , and WU‘.n and WJ.‘In
correspond to the synaptic weights of the hidden and output layers.

The error function for neural model, which is to be minimized, is expressed as follows:

1 1 2
E,_ :E(em)z :E(yp(k+1)—ym(k+l)) (8)
In the case of neural controller, the error function to be minimized is expressed as follows:
1 2 1 2
E, =§(ec) :E(yd(k+1)—yp(k+1)) ©)

The NM weights are then updates by equation (10) and (11).

Update the set of neighborhood neurons Wi;“ e V™ using the Kohonen learning rule:

AW (k) = ny, (K).(x5" = Wi (k) (10)
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M,,, (K) is the learning rate at any time instantk.

Update the weights W j‘f e V™ using gradient descent method:

OE_(w)
AW (k) = =, (K).—0—=
: ’ oW,
(1n
=M () (Yo (k+ D=y, (k+D).£] 3 WIEQ Wrx!) [-F(2 W)
jevm
M, (k) is the learning rate at any instant time k.
The NC weights are then updates by equation (12) and (13).
Modify the set of neighborhood neurons W; e V¢ by the Kohonen learning rule:
AW (k) =, (k).(x7 = Wi(k)) (12)
N,. (k) is the learning rate at any instant time k.
Calculate the weights W j‘"i e V¢ using gradient descent method:
ou(k)
AW (k) =—-n,.. k+1)- k+D))I(k) —— (13)
Jl( ) 112@ (ym( ) Yd( )) ( )6W1J°(k—l)
M, (k) is the learning rate at any instant timek. .
ou(k)
where ————— =u(k)-(1-u(k))-f Wi (k).x{ (14)
oW (k1) (k)-(1-u(k)) z i (K).x;
jev
Moreover J in (13) is defined as:
oy, (k+1 m e mom m
Ik = DmkED Y (Yo (1)) Wi (X W)Wy (15)

ou(k)

jevm

3. First Stability Approach
In this section, theorems and relevant proofs are presented to verify the Lyabunov Asmptotic Stability(LAS)
convergence :

Theoreme 3.1 :

Let m,, and 7, are the learning rates for the tuning parameters of NM. Then the convergence is guaranted
if the learning rates are chosen as :

2.,

LR o ey

.| 2.e
’nlm,max and n2m = min ( 22 ’n2m,max (16)
2

Where € and 1 . are two predefined positive constants satisfying 0 <& <1 andm_ _ =max(n,,),

respectively.
s =1 and s = 2 denote the hidden layer and the output layer, respectively.
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Proof of theorem 3.1 :
Define the Lyapunov function canditate :

Vo () = B (K) = 2 (k) = —(y, (k) = v, (K) )] (17)
2 2

Change of Lyapunov fonction is :

1 2 2
AVm(k):E[em(k+1)—em(k)J (18)
From e (k +1) = e (k) + Ae (k) (19)
Then AV, (k)= Ae, (k) {em(k) + %Aem (k)} (20)

The change identification error with respect to the hidden layer is computed as :

T
aem m __ m m

Where P, = aLﬂ;n:(ym .(1_ v, )).ijln .f'{ z Wi;“_xij.xim (22)

oW jevm
Using (21) in (20), we have

1 2 2¢
AV, (k)=——: PL(xP-W")| - m -1 (23)

) 2 [nlm | (Xl ’ ):| [nlm'PlT'(X;n _Wi;n) ]

The negative definiteness of AV _ (k) <0 as longas :

2e
m (24)
) Pl (x-W)

The change identification error with respect to the output layer is computed as :

T]lm

T
oe,, m_ )
Ae,, (k) = {aw;ln ] AW = -1, e, (k).P; (25)
Y m o m
Where P, = T - (Ym .(1_ V. )).f( Z W) (26)
il jevm
Using (25) in (20), we have
1
AV, (k) = -n,, e, (k) (P,)’ {1 =7 Mom '(Pz)z:l (27)
The negative definiteness of AV, ,(k) < 0 can be ensured as long as :
1—%nm.@g2>o (28)
2
Then _c (29)
an <
(P,)

This concludes the proof of Theorem 3.1.
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Theoreme 3.2 :
Let m,, and M,  are the learning rates for the tuning parameters of NC. Then the convergence is guaranted

if the learning rates are chosen as :

27,e and N,. = min —2T2 (30)

T ’n c,max
(1-Q) ~(x; - W) (1-Q,)

Where T, and n, ., are two predefined positive constants satisfying 0<t,<1 and Nommax = Max(Mg;, ),

n,. = min

’ncl,max

respectively, s = 1,2 .

Proof of theorem 3.2 :

Define the Lyapunov function canditate :

1 1
Velk) = E (k) = el (k) = —(ya (k) =y, (k) 31)
Using the similar methods, we can obtain
1
AV, (k) = Aec(k){ec(k)+5Aec(k)} (32)
The change tracking error with respect to the hidden layer is computed as :
T
ae c T C c 11 ¢
AQAH:(&JJ AW =—(1.Q;) My (xi - Wy) Vi,jeVv (33)
ij
_ ou _ ¢ f' c ,C c 34
Q= oW =(u-(1=u))-Wj- 2 Wit || X G4
ij jev®

Using (33) in (32), we have
1 T 2 2.
AV, (k)= —u—-[ 1-Q,) e (xf - we } |- : (35)
1( ) 7 ( QJ) uh (X J) (J'Qij)T'nlc(Xic—Wi;)

The negative definiteness of AV, (k) <0 as longas :

2e,
(J‘Qij )T MNie (ch - WUC)

1- >0 (36)

2.e,
(1.Q,) (x-wy)

Then mn, < 37

The change tracking error with respect to the output layer is computed as :

aeC ! 4 2
Ae, (k) = [Gwﬁj AW =-m, -e, '(J ) le) (38)
__oul) (1 . ¢ ¢ (39)
Q, Wik =D u&)(llmk»f{gaxmgky&]
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Using (38) in (32), we have

AV (k)= -1 .e.(].Q).[l_%.n .(J.Q):| (40)
The negative definiteness of AV_,(k) <0 as longas :
1 2
1_5'n20.(J'le) >0 @0
Then o < 2 (42)
(J'Qﬂ)

The proof of theorem 3.2 is completed.
4. Second Stability Approach

In this section, theorems and relevant proofs are presented to verify the Lyabunov Exponentiel Stability(LES)
convergence :

Theoreme 4.1 :

Let m,, and T, are the learning rates for the tuning parameters of NM. Then the convergence is guaranted

if the learning rates are chosen as :

(-a-men  (0-w)en - iy e fiogn

T m m — llm — T m m 2 - an - 2 (43)
Pl (x =W (k) Pl (x =W (k) P, P,
Where 0<y <1,s=1,2
Proof of theorem 4.1 :
We considere the function Lyabunov and its differential satisfies the following inequality :
AV, (k)< —-y,.-V, (k) ,s=12 (44)
Then V_(k +1)+(y,-1)-V_(k)<0 (45)
Using(17), Equation (45) can be expressed as :
1 1
Eefn(k+1)+(yS —1)(E-efn(k))S 0 (46)

Then the (46) can be rewritten as
Ae (k) +2-Ae_ (k)¢ (k)+7, e (k) <0 @7)

The change identification error with respect to the hidden layer is computed as in Eq. (21).
Using (21) in (47), we obtain :

M (2P (x," = WP () =21, ()BT (x," =W (k) e, +7, €3, (k) <0 (48)
Then

2
[P (x =Wy 0)] | ()~ 1 <o 49

P Wi ) T (e (xr - W o))

Eq. (49) can be modified as follows :
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~ e, (k) 2_ ~ e, (k) 2 (50)
M PIT.(X{“—WU‘.“(k))] ( YI)'[pf.(X;“—Wi;“(k))} =0

The change identification error with respect to the output layer is computed as in Eq. (27).
Using (27) in (47), we have :

(Mo 00 () P2 ) =201, P72 (K) + 7, -2 (K) <0 (51)
Eq. (51) can be modified as follows :
(Mow-Py =D +7, <0 (52)

The proof of theorem 4.1 is finished.

Theoreme 4.2 :

Let m,, and T, are the learning rates for the tuning parameters of NC. Then the convergence is guaranted

if the learning rates are chosen as :
(1—,/(1T—rs))ec(k) s (1+J(1—rs))ec(k) L 21—2rs . < 1+w2/1—2rs 53
(7-Qy) ~(xi-Ww;) (1Q,) -(xi-wy)  Qd Q-

Where 0<t,<1,s=1,2

Proof of theorem 4.2 :
We considere the function Lyabunov and its differential satisfies the following inequality :

AV (k)< -1 -V _(k) (54)
Then V (k+1)+ (1, -1)-V (k) <0 (55)
Using(31), Equation (55) can be expressed as :

%ef(k+1)+(rs—1)(%-e§(k)jso (56)
Then the (56) can be rewritten as

Aei (k)+2-Ae (k) e (k)+T, -ei(k) <0 (57)
The change identification error with respect to the hidden layer is computed as in Eq. (33).

Using (33) in (57), we obtain
(—mc (1Qy) (x5 - W ))2 ~2-(1-Qy) M (). (x ~WE) e (k) +1, -2 (k) < 0 (58)

T c AT 2 2-e (k) rs-ez(k)
|:(J'Qij) '(Xi - W )} ’ (nlc) - T . . M + T 7|0 (59)
(J'Qij) '(Xi _Wij) ((J'Qij) ‘(XiC_Wi_(i:))
The change identification error with respect to the output layer is computed as in Eq. (38).
Using (38) in (57), we have :

N5 e (k)-Qj T =2-e2(k)-Q}-J7 -, +1,-e2(k)<0 (60)
Eq. (61) can be modified as follows :
(M- Q- 17 =1 +1,<0 (61)

The proof of theorem 4.2 is finished.
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5. Simulation Results

This section presents two illustrative examples to validate the performance and stability of the proposed indirect
adaptive neural network based on the hybrid learning algorithm.

5.1. Example 1

The nonlinear system under consideration is defined as follows [14].

_ y(k) 3 62
Yk D) = s AGR (K) (62)
where A(k)=a,.(1+ sin(%)) (63)

For the purpose of trajectory tracking, the desired output is defined as a smooth multi-step signal. The
architectures of the NM and NC each comprise two input neurons and a single output neuron, with initial
synaptic weights randomly set within the interval [-2,2].

The parameters are chosenas: V™ = V¢ =5, a,=0.5,1, =09, A,=038, 1,=08, 1,=0.9
Mimmax = 0-85 Mopmax = 0.6, My e = 0.6, My 0 = 0.7

Figure 4 (a) and Figure 4 (b) show the performance of the controller in example 1 by LAS BP method and

LAS Hybrid method, respectively.
Figure 5 and Figure 6 show the adaptive learning rates with theorem 3.1 and theorem 3.2 in example 1, respectively.

Figure 7 (a) and Figure 7 (b) show the performance of the controller in example 1 by LES BP method and
LES Hybrid method, respectively.
Figure 8 and Figure 9 show the adaptive learning rates with theorem 4.1 and theorem 4.2 in example 1, respectively.

5.2. Example 2

The continuous stirred tank reactor (CSTR) under study can be modeled by a polynomial ARMA
representation as given in [30].

y(k+1)=0,+0,u(k)+0,y(k)+0,u’(k)+0,y(k —Du(k — u(k) (64)

The parameters are given by:
0, =0.558 0,=0.538 0,=0.116 0,=-0.127 6,=-0.034

In this study, y denotes the output of the process , while u represents the dilution rate around the operating point.
The control objective is to regulate y through appropriate manipulating of U, and the system is excited by
randomly varying input within the prescribed amplitude range [O ,1 ] .

In this work, both the NC and NM are implemented with the same architecture, consisting of four input

neurons and a single output neuron.
The parameters are chosenas: V™ = V® =5, a,=0.5,1, =09, A,=0.8, t,=0.8, 1,=0.9

nlm,max = 08’ an,max = 06’ nlc,max = 06’ nZC,max = 05

Figure 10 (a) and Figure 10 (b) show the performance of the controller in example 2 by LES BP method and
LES Hybrid method, respectively.

Figure 11 and Figure 12 show the adaptive learning rates with theorem 4.1 and theorem 4.2 in example 2,
respectively.

Figure 13 (a) and Figure 13 (b) show the performance of the controller in example 2 by LAS BP and LES Hybrid
algorithm, respectively.

Figure 14 and Figure 15 show the adaptive learning rates with theorem 4.1 and theorem 4.2 in example 2,
respectively.
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5.3. Discussion and results

The performance of the proposed hybrid learning-based indirect adaptive control system was evaluated through
two sets of simulation examples. As illustrated in Figures 4(b)-7(b) and 10(b)-13(b), the system demonstrates
satisfactory trajectory tracking, effectively following the desired reference signals. These results confirm the
ability of the hybrid algorithm to maintain stability while achieving accurate tracking. Table 1 provides a
comparison of error criteria and convergence rates across various stable learning approaches, highlighting that the
hybrid algorithm delivers the best performance in terms of both tracking accuracy and convergence efficiency
compared to the conventional backpropagation method. This improvement can be attributed to the integration of
the Kohonen self-organizing rule with gradient descent, which enhances convergence speed and overall control
robustness. Overall, the simulation results validate the effectiveness of the proposed control approach. The hybrid
learning mechanism not only ensures the stability of the closed-loop system but also optimizes tracking accuracy
and response speed, outperforming classical adaptive neural control methods.

Table 1. Comparative results of learning methods

199
. Stable Learning .
Examples Lyabunov Analysis Methods kz: E. CPU time (s)
=1
) . LAS BP 0.110 3.815
Asymptotic Stability —
LAS Hybrid 0.070 2.251
Example 1 - — —
Exponential Stability LES BP 0.118 3.509
LES Hybrid 0.060 2917
Asymptotic Stability LAS_BP 0.091 3.735
LAS Hybrid 0.060 2.109
Example 2 - — —
Exponential Stability LES BP 0.190 4.090
LES_Hybrid 0.042 3.257

6. CONCLUSION

This paper investigates the stability of an indirect adaptive neural control scheme applied to nonlinear systems.
The proposed control framework utilizes a multilayer neural network with online learning based on a hybrid
algorithm for both system identification and control tasks. Furthermore, a stability analysis of the online hybrid
learning algorithm is carried out using the Lyapunov synthesis method. As a result, sufficient conditions for
asymptotic and exponential stability are derived by appropriately adjusting the adaptive learning rates of both the
Neural Model and Neural Controller, ensuring the stability of the closed-loop adaptive system. Finally, two
simulation studies are presented, along with comparative results, demonstrating effective tracking of the desired
signals and confirming the stability of the closed-loop system through proper selection of learning rates for the

neural networks.

PAGE NO: 163




0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 36 ISSUE 1 2026

2
yd yd
i y
1 15f 1
1y ,
B 0.5 4
J 0 4
-0.5 - -0.5 4
b i -1 4
1.5k | 1.5} i
2 L L -2 - L L
25 =5 700 350 0 50 100 150 200 250
K k
(a) (b)
Figure 4. Evolution of Y, and y in example 1: (a) LAS_BP method and (b) LAS_Hybrid method.
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Figure 6. Trajectories of 1,, and M, with theorem 3.2 in example 1
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Figure 9.Trajectories of 1,, and T, with theorem 4.2 in example 1
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Figure 10. Evolution of y, and y, in example 2: (a) LAS_BP method and (b) LAS_Hybrid method.
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