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Abstract: The predictability of active demand's aggregated control reactions is a critical factor in determining its value in the 

energy and ancillary services markets. The authors of this article investigate compact electrically heated homes equipped with heat 

storage tanks and remote control via smart metering. They combine the advantages of the individual approaches by integrating a 

machine learning forecasting technique with a basic physically based model. Now, a support vector regression, an earlier machine 

learning model, is briefly contrasted with a stacked boosters network, a new deep learning technique. The house's outdoor-

dependent heat demand and the thermal dynamics of the heat storage tank are both modeled using the basic physically based model 

component. 
 

 
 

1 Introduction 

Often the value of dynamic demand response is small or even negative 
if the responses are unpredictable and unreliable. Traditional load 
forecasting methods completely fail in the presence of large 
dynamic load control actions. Thus, it is necessary to develop and 
use methods that forecast also the control responses accurately. 

As a solution, we study hybrid forecasting models that aim to 
combine the strengths of different modelling approaches and to 
forecast more accurately than their component models applied 
separately [1]. The hybrids include a machine learning method that 
forecasts the residual of the other model component that is a simple 
physically based model forecasting the dynamic load control 
responses. 

This paper studies short-term load forecasting in presence of 
dynamic load control. The aim is to forecast at 9 a.m. for each 
hour of the next day the aggregated power of loads that include 
active demand. The methods produce also forecasts for the same 
day and for the day after tomorrow, but the performance indicators 
are easier to understand if the forecasts do not overlap each other. 

The studied case comprises 727 small houses that are heated by 
electricity via a large heat storage tank. The heating of the heat 
storage is remotely controlled via a smart metering system. In this 
study, the houses were controlled in two separate groups. Group1 
had 350 houses and group 2 had 377 houses. The aggregated 
power of the groups must be forecast accurately and the load 
control is dynamic. Hourly interval metered power consumption of 
each house is available from the previous day and before. 
Dynamic market-based load control was applied both in the model 
identification period (31 May 2012–31 May 2013) and the 
verification period (1 January 2015–31 December 2019). A more 
detailed explanation of the load control system and one of the 

dynamic load control variants are in [2]. The aggregated mean 
power in the verification was about 1.235 MW in group 1 and 
1.234 MW in group 2. The respective aggregated peak powers 
were 9.325 and 9.581 MW. 

We first present a simple physically based model of the aggregated 
heat dynamics of the houses. It forecasts the heating needs, the 
expected load curves and the aggregated load variations in 
response to dynamic control signals. Next, we show how we 
improve the forecasting accuracy by adding a machine learning 
model to forecast the residual of the physically based model. 
Finally, the achieved results are summarised. 

 

 

2 Methodology 

 Physically based response model 

We applied the simple physically based model as shown in Fig. 1. 
The main component is a simple first-order model of the heat 
storage tank. The state variable of the model corresponds to the 
state of charge (SOC) of the heat storage tank. The model inputs 
comprise a control signal and the outdoor temperature. We 
forecast the daily heat demand of the building from the measured 
and forecast outdoor temperature according to an empirically 
identified relation. The forecast heat demand, the SOC, and the 
control signal define together when the heating is on in the model. 
Heat losses and saturation are also included in the model. The 
saturation effects depend on the dimensioning of the heating 
system and we identified them from the identification data. 

An earlier version of the simple physical model did not 
explicitly model the SOC of the heat storage tank and was 
explained in [3]. 

Journal of Systems Engineering and Electronics  (ISSN NO: 1671-1793) Volume 31 ISSUE 1 2021

PAGE NO: 87



 

 

 

Fig. 1 Physical heat balance model 

 

 

 

Fig. 2 Residual hybrid forecaster 

 
 

 Residual hybrid forecaster 

The main structure of the hybrid forecasting model is shown in 
Fig. 2. The input variables include time t, outdoor temperature 
Tout, and, for every controlled group i, the control signal ui, past 
hourly interval power Pi and the number of sites ni. Partly 
physical models forecast the responses for each controlled group 
and machine learning is taught to forecast the residual. The result 

With the SVR we modelled the time dynamics using input delays 
and defined the structure using a genetic algorithm and sensitivity 
functions [8]. The method selected delays from a set where the 
longest delay was 48 h and time resolution 1 h. SVR contains the 
control parameters (g, n, C ), which define the kernel width (g), an 
upper bound on the fraction of training errors and a lower bound 
on the fraction of support vectors (n), and a regularisation 
parameter affecting the margin size (C ). Based on experimenting, 
n = 0.5, C = 1.0 and g = 1/M, where M is the number of inputs, 
were selected for both SVR and SVR-hybrid models. 

The SVR models as described above may provide biased estimates 
when the load behaviour changes, because as such they may not 
include enough feedback from the past prediction error history. 
That is why we made also versions SVR-b and SVR-hybrid-b 
by adding a slow first-order low-pass filter with a time constant of 
3 weeks to remove the bias in the forecasting error. We leave to 
further research the more advanced solutions to improve the 
adaptation of the above SVR methods to typical load behaviour 
changes. 

 

 

3 Results 

 Comparison of the forecasting accuracy using 
NRMSE 

Tables 1–3 compare the forecasting accuracy of the different studied 
methods. The criterion is NRMSE, the root mean square error 
normalised to the mean measured power over the period studied. 

In the identification, using the physical control response model 
improved the fit. For group 1 the fit of the SBN was worse than 
for the other methods. Further analysis is needed in order to find 
the reasons. In spite of this, SBN had a good performance in the 
verification also with group 1. 

 

Table 1 Comparison of forecasting accuracy using NRMSE% in the 
identification 

 

Method Group 1 Group 2

physical 28.5 28.7 

SBN 37.8 28.1 

SVR 23.4 18.5 

SVR-b 23.4 18.6 

SBN-hybrid 22.9 21.6 

SVR-hybrid 23.3 21.6 

SVR-hybrid-b 23.3 21.7 

 

 
Table 2 Comparison of forecasting accuracy using NRMSE% in the 

verification for group 1 

is the forecast power of the controlled customer group Pf. It is the    
sum of the partly physical forecast and the forecast residual. 

 

 Stacked boosters network (SBN) 

SBN [4] is a novel deep learning architecture designed for short-term 
load forecasting. The network consists of a simple base forecaster 
and multiple boosting forecasters. Each boosting forecaster 
operates on the one-time scale: week, day or hour, and corrects 
systematic errors occurring in that time scale. The applied version 
of the network is the same as in the original paper [4] with the 
only exception that the simple base forecaster takes the control 
signal as an input in addition to the outside temperature. 

 
 Support vector regression (SVR) 

SVR is a machine learning technique for data classification and 
non-linear regression. The main technical details of SVR are 
explained in [5]. Nu(n)-SVR with the radial basis kernel function 
implemented in the scikit-learn package was used to execute the 
model runs [6, 7]. 

 

 

 

 

 

 
 

 

 
Table 3 Comparison of forecasting accuracy using NRMSE% in the 
verification for group 2 

 

Method 2015 2016 2017 2018 2019 All 

physical 47.1 41.8 42.5 39.9 41.1 42.6 

SBN 47.9 45.5 38.3 32.0 37.8 40.6 

SVR 45.2 47.1 41.8 33.1 30.0 40.4 

SVR-b 45.1 46.6 40.8 31.9 29.6 39.8 

SBN-hybrid 40.2 37.3 32.7 26.8 31.0 33.9 

SVR-hybrid 44.1 41.0 40.5 35.6 35.8 39.6 

SVR-hybrid-b 43.9 40.8 40.4 35.5 35.7 39.5 

Method 2015 2016 2017 2018 2019 All 

physical 48.1 38.0 29.9 29.0 32.4 36.0 
SBN 43.9 39.7 34.4 30.1 32.0 36.1 
SVR 51.7 47.5 45.4 39.0 33.2 44.0 
SVR-b 50.2 44.7 40.7 33.2 30.1 40.5 
SBN-hybrid 38.6 32.1 23.8 20.1 22.0 27.8 
SVR-hybrid 47.9 36.8 27.9 25.3 30.8 34.4 

SVR-hybrid-b 47.6 36.4 27.3 24.5 29.9 33.9 
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The hybrid methods, especially the SBN hybrid, had the best 
forecasting performance in the verification. In 2015 and 2016, the 
forecasting performance was poor, because the load control was 
subject to communication performance tests and data 
communication failures made the responses unpredictable. In group 
2, the physically based model identified for group 1 was used, 
because in the identification the fit (NRMSE 28.7%) was almost as 
good as with the model identified from group 2 (NRMSE 26.8%). 
The above verification results do not support that choice. 

 
 Comparison of the forecasting error time behaviour 

 
Figs. 3–5 show the envelopes of the forecasting errors (residuals) of 
the forecasting methods over the whole 5-year long verification 
period. Because the large forecasting errors are of interest, we omit 
zooming these figures. 

 
 

Fig. 3 Residual of the physically based response model of group 1 in 

verification 

 

 

Fig. 4   Residual of the SBN-hybrid of group 1 in verification 

 

 

Fig. 5   Residual of the SVR-hybrid of group 1 in verification 

 

 

Fig. 6 Sample of aggregated measurements and forecasts 

 

 
 

 Forecasts compared with the measurements 

Fig. 6 shows the measured load, the physical forecast and the SBN 
forecast during a week in the verification period. When the dynamic 
control signal allows the heating of the heat storage, the load shows 
high peaks. The control signal turns on heating in those night hours 
when the electricity price in the day-ahead spot market is the lowest 
thus minimising the heating electricity costs. In Fig. 6 in some night 
hours, the control signal has turned heating off as can be seen from 
the gaps in the heating period. The physically based forecast and 
the hybrid methods forecast this correctly. 

 

 

 Discussion 

The comparisons show relatively high NRMSE values due to the 
following reasons. (i) The size of the groups is small and thus the 
stochastic behaviour of individual houses does not completely 
cancel out in the aggregation. (ii) The loads are dynamically 
controlled which makes the forecasting task challenging. (iii) The 
mean load is very small compared to the high load peaks and 
relatively small forecasting errors of the peak heights are rather 
large compared to the mean load. In [1] we used a roughly similar 
hybrid forecasting approach as the SVR hybrid method here for 
forecasting the power of a distribution area with about 60,000 
customers 8000 of them being dynamically controlled, the 
NRMSE was well below 4%. 

The simple physically based forecasting model was used in a 
simulation study for the estimation of the benefits and costs from 
the participation of this flexible demand to an ancillary service 
market. The project EU-SysFlex will report the results. The hybrid 
models can improve the accuracy of the simulations in possible 
future studies, if needed. 

 

 

 

4 Conclusion 

The integration of the machine learning methods (SBN and SVR) 
with the physically based response model improved the forecasting 
accuracy in the studied short-term load forecasting problem that 
has much dynamic load control. The SBN-hybrid had the best 
prediction performance in the comparison. Accurate forecasting of 
the control responses improves the value of dynamic demand 
responses. An additional benefit is that the same physically based 
response model is also a suitable simulation model for analysing 
the benefits, costs and CO2 emission impacts of potential uses of 
dynamic demand response. 
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