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Abstract:  

In industrial processes, the control of 

systems with significant time delays presents 

challenges that conventional control methods 

struggle to address effectively. This study 

compares the performance of two control strategies 

for such systems: the Integral Plus Dead Time 

(IPDT) and Setpoint-Weighted Integral Plus Dead 

Time (SOIPDT) systems. In the primary loop, both 

systems are tuned with Proportional-Derivative 

(PD) controllers. The secondary loop, which 

experiences large time delays, is controlled using 

different methodologies For stabilizing IPTD 

processes a double loop control scheme is a better 

alternative to unity feedback scheme, the inner loop 

has a Smith Predictor (SP) with a P/PD controller 

and the outer loop has a Fractional Order Internal 

Model Control (FOIMC) filter. The technique 

utilized to tune controller parameters is direct 

synthesis. The IMC tuning method gives improved 

response for changes in setpoint or reference input, 

but the response for load/disturbance input changes 

is sluggish. To overcome this limitation, and to 

improve both the response for set point tracking 

and disturbance rejection, a controller used in outer 

loop is designed by Particle Swarm Optimization 

(PSO) tuning method. This approach improves the 

disturbance rejection and stability of overall control 

system. In the proposed method, the inner 

controller is tuned by Direct Synthesis approach 

and outer loop is designed by PSO algorithm. This 

combination of tuning approaches balances both 

type of responses. 

 

KEYWORDS: Smith predictor, FOPID controller, 

PSO, integrating process, closed-loop time 

constant, dead time, and P/PD controller  

1.  Introduction 

Industrial processes often exhibit complex 

dynamics and time delays, posing significant 

challenges for control system design and 

implementation. In such systems, the effective 

management of large time delays is crucial for 

achieving desired performance metrics such as 

setpoint tracking, disturbance rejection, and 

stability. To address these challenges, various 

control strategies have been developed, among 

which the Integral Plus Dead Time (IPDT) and 

Setpoint-Weighted Integral Plus Dead Time 

(SOIPDT) systems stand out for their ability to 

handle dead-time-dominant processes. 

In the primary loop of IPDT and SOIPDT systems, 

Proportional-Derivative (PD) controllers are 

commonly utilized for their simplicity and 

effectiveness in regulating process variables. 

However, when dealing with secondary loops 

characterized by substantial time delays, 

conventional control techniques may fall short in 

providing satisfactory performance. To overcome 

this limitation, advanced control methodologies 

have been proposed, involving the use of Fractional 

Order Internal Model Control (FOIMC), adjusted 

using a Smith Predictor, and Fractional Order 
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Proportional-Integral-Derivative (FOPID) 

controllers.  

This study focuses on comparing the 

performance of two control strategies applied to 

IPDT and SOIPDT systems in industrial processes. 

In the first approach, a PD controller is employed 

in the primary loop, while In the secondary loop, a 

Particle Swarm Optimization (PSO) algorithm-

based FOPID controller[2] is used to efficiently 

handle long delays. On the other hand, the second 

strategy uses a FOIMC controller tuned with a 

Smith Predictor in the secondary loop and a PD 

controller in the primary loop[1]. 

The comparison between these control 

strategies aims to provide insights into their relative 

strengths and weaknesses in managing systems 

with significant time delays. Performance metrics 

such as setpoint tracking accuracy, disturbance 

rejection capability, control effort, and stability are 

evaluated through simulation studies. Additionally, 

considerations regarding computational 

complexity, implementation ease, and robustness 

are taken into account to provide a comprehensive 

assessment. 

By systematically comparing the two 

control strategies, understanding of effective 

control methodologies for industrial processes with 

large time delays. The findings will inform 

engineers and researchers in selecting suitable 

control strategies tailored to specific process 

dynamics and performance requirements, 

ultimately advancing the state-of-the-art in control 

system design for complex industrial applications. 

2.  STRUCTURE OF PROPOSED 

CONTROL SYSTEM 

The target set point, R1, is what Y is 

supposed to monitor, and FOPID-based PSO 

algorithm control architecture shown in Figure 1. 

This architecture consists of an inner-loop P/PD 

controller (𝐺𝐶) and an outer-loop FOPID filter 

(𝐶𝐹𝑂𝑃𝐼𝐷). D/N stands for measurement noise and 

load disturbance, respectively. The inner-loop's 

reference signal, 𝑅2, is the output of 𝐶𝐹𝑂𝑃𝐼𝐷 . The 

process to be regulated, denoted by 𝐺𝑃 , is classified 

as either SOIPTD (Second Order Integrating 

Process with Time Delay) or IPTD (Integrating 

Process with Time Delay). Certain transfer 

functions can be used to describe these processes. 

   𝐺𝑃 (𝑆) =  
𝐾

𝑆
𝑒−𝜃𝑠           (1) 

  𝐺𝑃(S) = 
𝐾

𝑆(𝜏𝑆 +1)
𝑒−𝜃𝑠           (2) 

In the provided context, The variables K, 

τ, and θ represent the open-loop gain, time 

constant, and dead-time, respectively. 

The process model for 𝐺𝑃  is represented 

by the symbol 𝐺𝑚𝑒−𝜃𝑠𝑠. A Smith predictor is used 

inside the inner-loop to deal with the plant's 

substantial time delay. The following is the transfer 

function inside the closed loop: 

𝑌(𝑆)

𝑅2(𝑆)
 = 

𝐺𝐶(𝑆)𝐺𝑃(𝑆)

1+𝐺𝐶(𝑆)𝐺𝑚(𝑠)+𝐺𝐶(𝑆)(𝐺𝑃(𝑆)−𝐺𝑚(𝑆)𝑒−𝜃𝑚𝑠)
     (3) 

When 𝐺𝑝(𝑆) = 𝐺𝑚(𝑠)𝑒−𝜃𝑚𝑠, 3 becomes 

𝑌(𝑆)

𝑅2(𝑆)
  = 

𝐺𝐶(𝑆)𝐺𝑃(𝑆)

1+𝐺𝐶(𝑆)𝐺𝑚(𝑆)
                                       (4) 

 𝐺𝐶  can be expressed without taking 𝑒−𝜃𝑚𝑠 

into account. 𝑃𝑚 stands for the Y/𝑅2 model.   When 

𝐺𝑃(𝑆) =  𝐺𝑚𝑒−𝜃𝑚𝑠 , the disturbance response is 

represented in Figure 1 as  

𝑌(𝑆)

𝐷(𝑆)
=

(1−𝐶𝐹𝑂𝑃𝐼𝐷(𝑆)𝑃𝑚(𝑠)(1+𝐺𝐶(𝑆)𝐺𝑚(𝑠)−𝐺𝐶(𝑆)𝐺𝑚(𝑠)𝑒−𝜃𝑚𝑆)+𝐺𝐶(𝑆)𝐺𝑚(𝑠)(𝑒−𝜃𝑚𝑠−1))

𝐺𝑃 (𝑆)

(1−𝐶𝐹𝑂𝑃𝐼𝐷(𝑆)𝑃𝑚(𝑠)(1+𝐺𝐶(𝑆)𝐺𝑚(𝑠)+𝐺𝐶(𝑆)(𝐶𝐹𝑂𝑃𝐼𝐷(𝑆)𝐺𝑃(𝑆)+𝐺𝑚(𝑠)))
                                 (5) 

3. CONTROLLER   DESIGNING  

 This section details the process for 

determining the parameters of 𝐺𝐶and 𝐶𝐹𝑂𝑃𝐼𝐷 . 

 

   FIGURE 1- Proposed fractional-order PID 

controller (FOPID)-based PSO algorithm. 

3.1    DESIGN OF 𝑮𝑪 

𝐺𝐶  is designed via direct synthesis for both 

IPTD and SOIPTD processes. The initial stage in 

this procedure is to identify the optimal closed-loop 

transfer function for set-point adjustment. First, the 

true closed-loop transfer function is determined. 
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The order of the actual transfer function matches 

that of the desired closed-loop transfer function.  

 

. Equations for adjusting the controller can 

be developed using closed-loop tuning parameters 

.Regarding the IPTD Procedure: 

Substituting equation 1 and 𝐺𝐶(𝑆) = 𝐾𝑃 into 

equation 4, we obtain 

     
𝑌(𝑆)

𝑅2(𝑆)
  =  

𝑒−𝜃𝑚𝑠

(
1

𝐾𝐾𝑃
)𝑆+1

                (6) 

Assuming the following for the intended closed-

loop response with a changeable parameter (λ2):: 

( 
𝑌(𝑆)

𝑅2(𝑆)
)𝑑 = 

𝑒−𝜃𝑚𝑠

(𝜆2𝑆+1)
            (7) 

When equations 6 and 7 are compared, the 

proportional gain is computed as  

𝐾𝑃 = 
1

𝜆2𝐾
                             (8) 

Equation 4 for the SOIPDT Process can be 

obtained by substituting equation 2 and 

𝐺𝐶(S) = 𝐾𝑃 + 𝐾𝑑 S. 

 

𝑌(𝑆)

𝑅2(𝑆)
 = 

(1+
𝐾𝑑
𝐾𝑃

𝑆)𝑒−𝜃𝑚𝑠

(
𝜏

𝐾𝑃𝐾
)𝑆2+(

1+𝐾𝐾𝑑
𝐾𝑃𝐾

)𝑆+1
                            (9) 

Assumed to be the intended closed-loop response 

with an adjustable parameter (λ2) is 

 ( 
𝑌(𝑠)

𝑅2(𝑆)
)𝑑 =  

(1+
𝐾𝑑
𝐾𝑃

)𝑒−𝜃𝑚𝑠

(𝜆2𝑆+1)2            (10)  

The following is the derivation of the PD controller 

settings by comparing equations 9 and 10:  

                        

𝐾𝑃    = 
𝜏

𝜆2
2𝐾                    (11)                                      

𝐾𝑑  =  
2𝜆2𝐾𝑃−1

𝐾
          (12) 

Finding a balance between resilience and 

performance is necessary when choosing and 

selecting λ2. The parameter range that can be 

adjusted is usually stated  𝜃𝑚. Two well-known 

delay process models IPTD and SOIPTD are 

looked at. The inner loop (seen in Figure 1 as a red 

dashed line) is simulated, and the results are plotted 

for several values of 

𝜆2(𝜃𝑚/2,𝜃𝑚/3,𝜃𝑚/4,𝜃𝑚/5,𝜃𝑚/6). In the context of 

FOPID design, the FOIMC scheme outperforms the 

integer-order IMC method in terms of efficiency. 

By using the FOIMC filter, overshoot is lessened 

and the system's resilience is increased.  

 

FRACTIONAL ORDER 

CONTROLLERS' FUNDAMENTALS: 

 
Fractional order differential equations, 

which include fractional order derivatives and 

integrals, are what set fractional order controllers 

apart. The most often used definition for integer 

order is the Riemann-Liouville definition, which 

was first presented by Riemann and Liouville.   

  a 𝐷𝑡
𝛼 f(t) =  

1

𝛤(𝑛−∝)
 

𝑑𝑛

𝑑𝑡𝑛 ∫
𝑓(𝜏)

(𝑡−𝜏)𝛼−𝑛+1

𝑡

𝑎
d𝜏,             (13) 

 n -1<𝛼 < 𝑛, 

Here, the lower and higher bounds are 

represented by 'a' and 't', respectively, and Euler's 

gamma function is denoted by Γ(•). 𝛼 denotes the 

sequence of integrals or derivatives, which can 

involve complex numbers in addition to integers. 

Fractional differentiation or integration is 

represented by the operator a𝐷𝑡
𝛼, which introduces 

the concept of fractional calculus. The following 

explanation will help you understand the Laplace 

transformation of the nth-order derivative of a 

signal x(t): 

L{𝐷𝑛(𝑡)} = ∫ 𝑒−𝑠𝑡0𝐷𝑡
𝑛∞

0
 x(t)dt = 𝑆𝑛𝑋(𝑆) −   

𝑆𝐾0𝐷𝑡
𝑛−𝑘−1x(t)|𝑡=0                                         (14)                                                                             

Among various approximation methods, 

the Oustaloup method stands out as a well-known 

approach. Using the Oustaloup approach, the 

transfer function can be written as follows:  

𝑆𝑛≈ ∏
1+(

𝑠

𝜔𝑧,𝑛
)

1+(
𝑠

𝜔𝑝,𝑛
)

𝑁
𝑛=1                                             (15)     

The frequency range in which this 

approximation is made is [𝜔l; 𝜔h]. In order to 

attain unit gain at 1 rad/s on both sides of Equation 

(15), the gain k is modified.  The order of the 

approximation determines the quality of the 

approximating transfer function. Equation (15)'s 

pole and zero frequencies are obtained by:                                                                             

𝜔𝑧,1 = 𝜔1√𝑛                                (16)                                                                                             

 𝜔𝑝,𝑛= 𝜔𝑧,𝑛 ∈,        n=1,…,N           (17) 
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  𝜔𝑧,𝑛+1 = 𝜔𝑝,𝑛 𝜂,                        (18)                                                                     

∈ = (
𝜔ℎ

𝜔𝑙
)

𝑣

𝑁                                    (19)                                                                   

𝜂 = (
𝜔ℎ

𝜔𝑙
)

(1−𝑣)

𝑁                                  (20) 

 

Examining the scenario in which v < 0 

allows for the inversion of Equation (15). The 

approximation becomes unacceptable if |v| > 1, 

which frequently calls for the following separation 

of the fractional orders of s:  

 

       𝑠𝑣 = 𝑠𝑛𝑠𝛿,     n 𝜖 Z,    𝛿 𝜖 [0,1]        (21) 

Therefore, the latter term in Equation (21), denoted 

as 𝑠𝛿, needs to be approximated. 

This is the differential equation that can be used to 

regulate P𝐼𝜆 𝐷𝜆 the controller: 

 

       U(t)  =  𝑘𝑝e(t)+𝑘𝑖𝐷𝑡
−𝜆e(t)+ 𝑘𝑑𝐷𝑡

𝜇
e(t)    (22) 

The transfer function of the Fractional Order 

Proportional Integral Derivative (FOPID) controller 

is as follows: 
 

        𝐺𝐶(𝑆) = 𝐾𝑃 +𝐾1𝑆−𝜆+𝐾𝐷𝑆𝜇                  (23) 

Three parameters (𝐾𝑃,𝐾𝐼 , and 𝐾𝐷 ) and 

two non-integer orders (μ,λ) must be optimally 

determined for a given system when constructing a 

FOPID controller.  
 

4. OPTIMIZATION ALGORITHMS 

FOR PARAMETRIC TUNING 

Particle swarm optimization 

Kennedy and Eberhart proposed particle 

swarm optimization (PSO) in 1995, drawing 

inspiration from the social dynamics observed in 

bird flocks. Evolutionary computing techniques, 

like PSO, imitate the movement and intelligence of 

swarms, similar to how they would choose the best 
place to feed. In PSO, a swarm is made up of 

moving, seemingly disorganized people that huddle 

together and change their path randomly as they go. 

Particles in the swarm move through a search space 

in an attempt to identify the best answer to an 

optimization problem. 

 

Every particle in a swarm adjusts its 

course in an n-dimensional space based on both its 

own and the other particles' experiences. The best 

position any particle in the swarm has ever had 

(gbest) and the best position any particle has ever 

had in the problem space (pbest) are recorded by 

each particle. 

 

Under the PSO method, every particle 

travels in n-dimensional space at a velocity that is 
modified at every time step based on its pbest and 

gbest positions. Based on the separations between 

each particle's present position and pbest and gbest, 

adjustments are made to its current position and 

velocity. For the purpose of preventing excessive 

movement, each particle's velocity is confined 

inside the interval [-vmax, +vmax].  

The following equation determines the ith particle's 

velocity at each step:  

 

𝑉𝑖(𝑛) =X(𝑣𝑖(n-1)+𝜑1𝑟1(pbes𝑡𝑖-𝑃𝑖(n1))+𝜑2𝑟2(gbest-

𝑃𝑖(n-1))),                                (24) 

Each particle in this case represents a possible 

solution and is characterized by a position vector. 
 

Χ = 
2

|2−𝜑−√𝜑2−4𝜑|
,𝜑 = 𝜑1+𝜑2 ,𝜑>4      (25) 

𝑃𝑖(n) = 𝑃𝑖(n-1)+ 𝑉𝑖(n)                   (26) 

Using the changed velocity, the particle updates its 

position from the current to the next one: 

 

 

         Figure 2: Flow chart of PSO algorithm  
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SIMULATION RESULTS: 

It simulates a unit-step set-point 

modification  to assess the performance of the 

suggested strategy against a number of recently 

published strategies.  

              ISE = ∫ 𝑒2(𝑡)𝑑𝑡
∞

0
               (27) 

                

               IAE= ∫ |𝑒(𝑡)|
∞

0
                  (28) 

 

               𝑇𝑟 = ( 𝜋 − cos−1 𝜉)/𝜔𝑑     (29) 

                𝑇𝑠 = 4/ξ𝜔𝑛                          (30) 

 

The variance between the controlled 

output (Y) and the reference input (𝑅1) is 

represented by the error e(t) in equations 27 and 28.   
The recommended approach has lower IAE, 
ISE, Tr, and Ts measure values. The percentage 

of disturbance in the plant model parameters stays 

consistent with the literature(s) utilized for 

comparison analysis, allowing for an investigation 

into the resilience of this design.  

 

5. SIMULATION REULTS AND 

DISCUSSIONS 

Example 1: To describe,the controller plan 

technique proposed here, we consider the model 

given by: 

𝐺𝑃  = 
1

𝑆
𝑒−5𝑠 

    The  𝐶𝐹𝑂𝑃𝐼𝐷  is computed as 

𝐶𝐹𝑂𝑃𝐼𝐷  = 
2.597𝑆+1

4.92 𝑆1.05+1
 

 

Gain K = 0.6667 

 

For the purpose of comparison, the 

reference uses the FOIMC controller parameter.The 

disturbance elimination capacity is evaluated by 

simulating a step input with d = -0.05 at t = 80 s. In 

order to assess robustness, a perturbation of +5% is 

additionally applied to K alone. According to 

Deepak's methodology and the suggested strategy, 

three controller settings must be adjusted, 

correspondingly. As a result, 𝑒−5𝑠  represents the 

altered model's transfer function. Figure 3 shows 

responses for both nominal and perturbed models. 

  The graphic makes it evident that the 

recommended approach improves load disturbance 

reduction and speeds up set-point tracking.  Table 

1displays the IAE, ISE, Tr, and Ts metrics for the 

various strategies. 

Interestingly, the recommended approach 

outperforms other approaches that were taken into 

consideration for comparison in terms of 

performance measures. 

 

Figure 3: Closed loop response of Example 

Table 1: 

 

Example 2:  To describe,the controller plan 

technique proposed here, we consider the model 

given by: 

                          𝐺𝑃  = 
1

𝑆
𝑒−7.77𝑠 

   The  𝐶𝐹𝑂𝑃𝐼𝐷   is computed as 

𝐶𝐹𝑂𝑃𝐼𝐷  = 
3.59𝑠+1

3.75𝑠1.05+1 

Gain    K = 4.17 

For the purpose of comparison, the 

reference uses the FOIMC controller parameter.The 

disturbance elimination capacity is evaluated by 

simulating a step input with d = -1 at t = 100 s. In 

order to assess robustness, a perturbation of +5% is 

additionally applied to K alone. According to 

Deepak's methodology and the suggested strategy, 

three controller settings must be adjusted, 

correspondingly. As a result, 𝑒−7.77𝑠 represents the 

altered model's transfer function. Figure 4 shows 

responses for both nominal and perturbed models. 

The graphic makes it evident that the recommended 

approach improves load disturbance reduction and 
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speeds up set-point tracking. Table 2 displays the 

IAE, ISE, Tr, and Ts metrics for the various 

strategies. 

Interestingly, the recommended approach 

outperforms other approaches that were taken 

into consideration for comparison in terms of 

performance measures. 

Figure 4: Closed loop response of Example 2 

Table2: 

 

 Example 3: To describe,the controller plan 

technique proposed here, we consider the model 

given by: 

                                   Gp     = 
1

1.2𝑠+1
𝑒−4𝑠 

           The 𝐶𝐹𝑂𝑃𝐼𝐷  is computed as 

𝐶𝐹𝑂𝑃𝐼𝐷   = 
2.5𝑆1+1

2.9𝑆1.05+1
 

Gain   K= 83.33 

For the purpose of comparison, the 

reference uses the FOIMC controller parameter.The 

disturbance elimination capacity is evaluated by 

simulating a step input with d = 10 at t = 75 s. In 

order to assess robustness, a perturbation of +5% is 

additionally applied to K alone. According to 
Deepak's methodology and the suggested strategy, 

three controller settings must be adjusted, 

correspondingly. As a result, 𝑒−4𝑠 represents the 

altered model's transfer function. Figure 5 shows 

responses for both nominal and perturbed models. 

 

The graphic makes it evident that the 

recommended approach improves load disturbance 

reduction and speeds up set-point tracking. Table 3 

displays the IAE, ISE, Tr, and Ts metrics for the 

various strategies. 

. Interestingly, the recommended approach 

outperforms other approaches that were taken into 

consideration for comparison in terms of 

performance measures. 

 

 

Figure 5: Closed loop response of Example 3 

Table 3: 

 

Example 4: To describe,the controller plan 

technique proposed here, we consider the model 

given by: 

                                   Gp     = 
1

𝑆+1
𝑒−4𝑠 

                   The 𝐶𝐹𝑂𝑃𝐼𝐷  is computed as 

𝐶𝐹𝑂𝑃𝐼𝐷   = 
0.54𝑠2+𝑖.6𝑠+1

(0.96𝑠+1)(2.5𝑠1.02+1)
 

Gain K= 1 

For the purpose of comparison, the 

reference uses the FOIMC controller parameter.The 

disturbance elimination capacity is evaluated by 

simulating a step input with d = 10 at t = 100s. In 

order to assess robustness, a perturbation of +5% is 

additionally applied to K alone. According to 

Deepak's methodology and the suggested strategy, 

three controller settings must be adjusted, 

correspondingly. As a result, 𝑒−4𝑠  represents the 

altered model's transfer function. Figure 6 shows 

responses for both nominal and perturbed models. 

The graphic makes it evident that the 

recommended approach improves load disturbance 

reduction and speeds up set-point tracking.  Table 4 
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displays the IAE, ISE, Tr, and Ts metrics for the 

various strategies. 

Interestingly, the recommended approach 

outperforms other approaches that were taken into 

consideration for comparison in terms of 

performance measures. 

 

  Figure 6: Closed loop response of Example 4 

Table 4: 

 

Example 5: To describe,the controller plan 

technique proposed here, we consider the model 

given by: 

                                   Gp     = 
1

3.4945𝑆+1
𝑒−6.567𝑠 

                   The 𝐶𝐹𝑂𝑃𝐼𝐷  is computed as 

𝐶𝐹𝑂𝑃𝐼𝐷   =  
6.25𝑆2+5𝑆+1

(3.211𝑆+1)( 10𝑆1.05+1)
 

Gain K = 1.7956 

For the purpose of comparison, the reference uses 

the FOIMC controller parameter.The disturbance 

elimination capacity is evaluated by simulating a 

step input with d = 10 at t = 75 s. In order to assess 

robustness, a perturbation of +5% is additionally 

applied to K alone. According to Deepak's 

methodology and the suggested strategy, three 

controller settings must be adjusted, 

correspondingly. As a result, 𝑒−6.567𝑠 represents the 

altered model's transfer function. Figure 7 shows 

responses for both nominal and perturbed models. 

. The graphic makes it evident that the 

recommended approach improves load disturbance 

reduction and speeds up set-point tracking. Table 5 

displays the IAE, ISE, Tr, and Ts metrics for the 

various strategies. 

Interestingly, the recommended approach 

outperforms other approaches that were taken into 

consideration for comparison in terms of 

performance measures. 

  

 

Figure 7: Closed loop response of Example 5 

Table 5: 

 

6. CONCLUSION: 

A new dead-time compensator with 

several loops enhanced with FOPID has proved to 

be effective in combating significant time delays in 

integrating processes. The adjustable parameters 

governing the FOPID filter and direct synthesis-

based P/PD controllers play a pivotal role in the 

proposed approach’s success. The simulation 

results undeniably highlight the advantages of the 

strategy, showcasing improved reference tracking 

and disturbance rejection even in challenging 

scenarios. 
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