Journal of Systems Engineering and Electronics (ISSN NO: 1671-1793) Volume 35 ISSUE 12 2025

“Artificial Intelligence in Healthcare Imaging: A Survey on Foundation Models, Fairness, and

Explainability”
Prof. Ruksar Fatima Shaista Fatima Junaidi
Dept. of Computer Science and Engineering M.Tech Student
Khaja Bandanawaz University Dept. of computer Science and Engineering

Khaja Bandanawaz University

Rugayya Rafa Suhana Anjum
M.Tech Student M.Tech Student
Dept. of computer Science and Engineering Dept. of computer Science and Engineering
Khaja Bandanawaz University Khaja Bandanawaz University

Abstract

Artificial Intelligence (Al) is transforming the world of healthcare imaging in ways that once
felt impossible. Tasks that once demanded long hours of careful examination from specialists
can now be supported by intelligent algorithms capable of analyzing complex medical images
rapidly and consistently [33], [15]. These systems do not replace doctors, but they strengthen
clinical decision-making by highlighting subtle patterns, anomalies, and early signs of disease
that might otherwise go unnoticed [49]. As a result, patients benefit from faster diagnoses,
earlier interventions, and improved treatment outcomes ultimately helping clinicians deliver
more timely, accurate, and accessible healthcare [33], [49].

The rise of deep learning and large foundation models has accelerated this shift in medical
imaging. Today’s Al systems can interpret X-rays, CT scans, MRIs, ultrasounds, and even high-
resolution pathology slides with remarkable precision [33]. Advanced models such as the
Segment Anything Model (SAM) [14], MedCLIP [11], and BioMedGPT [12] learn from
massive collections of medical images and clinical text, enabling them to adapt to a wide range
of diagnostic tasks from tumor detection to organ segmentation. By identifying subtle patterns
that may be invisible to the human eye, these models are reshaping how clinicians analyze and
interpret imaging data, ultimately enhancing the accuracy and efficiency of medical diagnosis
[7], [14].

However, with this rapid progress comes a responsibility to ensure that these systems function
safely and fairly. Healthcare affects every kind of person, so Al models must perform reliably
across different skin tones, age groups, and patient backgrounds an issue highlighted by
multiple studies showing how biased datasets can lead to unequal outcomes [5], [17], [19],
[27]. If such biases are not addressed, they can reinforce disparities in clinical care. This is
where explainable Al becomes essential: it provides clinicians with clear insights into how and
why an algorithm reached a particular decision [4], [22], [42]. When doctors can understand
the reasoning behind an AI’s prediction, it strengthens trust and helps ensure that the
technology becomes a reliable clinical partner rather than a mysterious black box.

Despite ongoing challenges such as safeguarding patient privacy [13], [58], validating Al
models in real-world clinical environments [41], and achieving full clinical acceptance among
healthcare providers [20] the impact of Al in healthcare imaging is already undeniable. By
reducing workload, enhancing diagnostic accuracy, and supporting earlier detection of disease,
Al has become a powerful ally for clinicians [33]. As these technologies continue to mature,
they hold the potential to make high-quality diagnostic services more accessible across the
globe, ultimately improving patient care and health outcomes for millions [7].
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1. Introduction
1.1 Foundation and Multimodal Models for Medical Imaging

Foundation models and multimodal vision—language systems are becoming the new backbone
of Al in healthcare imaging. Instead of relying on separate models for each imaging task, these
large pretrained networks learn generalizable medical patterns that can be adapted to diverse
applications from tumor detection to organ segmentation and even automated report generation
[7],[30], [46]. Because they are trained on massive collections of images and clinical text, they
can recognize subtle visual cues and transfer this knowledge across different imaging
modalities [7], [45]. This shift represents a move toward unified, flexible Al systems capable
of supporting a wide range of clinical workflows, making them far more scalable and efficient
than traditional single-task models [7], [30].

A major reason medical Al has advanced so quickly is the rise of self-supervised and
contrastive learning. These approaches allow models to learn from vast amounts of unlabeled
data crucial in medicine, where annotated datasets are often expensive and time-consuming to
produce [21], [31]. By learning to associate images with clinical text descriptions or by
uncovering structure within unlabeled datasets, these models develop strong and transferable
representations that can later be fine-tuned for specific clinical tasks [23], [31]. This makes
them more adaptable, more data-efficient, and often more reliable when dealing with real-world
clinical variation [7], [21].

1.3Fairness, Demographic Leakage, and Bias Mitigation

As Al becomes more embedded in medical decision-making, fairness has emerged as one of
the most critical areas of research. Studies have shown that medical imaging models can
sometimes infer demographic information such as age, sex, or race even when it is not
explicitly present in the image [19], [40]. If not addressed, these hidden correlations may lead
to uneven performance across different patient groups, raising concerns about unequal clinical
outcomes [5], [17], [27]. Fairness research therefore focuses on understanding where bias
originates, how it influences clinical predictions, and what strategies such as balanced datasets,
robust evaluation, or bias-resistant training methods can help ensure that Al systems provide
equitable care for all patients [5], [29].

1.4Explainability and Trustworthy Al for Clinical Use

For Al tools to be welcomed into clinical practice, doctors need to understand why a model
made a particular prediction. Explainability techniques aim to open up the “black box” by
showing which image features influenced a model’s decision or by generating clear, human-
readable rationales [4], [22]. While traditional approaches—such as heatmaps—are widely
used, newer methods focus on more intuitive forms of explanation, including concept-based
reasoning and text-visual summaries that align more closely with clinical thinking [42], [46].
The goal is not only to make models interpretable but to ensure the explanations are genuinely
useful for clinicians, helping them verify Al-generated findings and ultimately build trust in
the technology [4], [22], [42].
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1.5 Clinical Validation, Deployment, Privacy, and Governance

Building an accurate model is only the first step bringing Al safely into hospitals requires
careful validation, strong privacy protections, and thoughtful governance. Real-world
deployment involves evaluating models across multiple hospitals, monitoring their
performance over time, and ensuring they integrate smoothly into existing medical workflows
[41], [20]. At the same time, protecting patient data remains essential, leading to growing
interest in privacy-preserving training approaches and secure data-sharing frameworks [13],
[32], [58]. As healthcare systems adopt foundation models and generative Al, conversations
around regulation, transparency, and clinician oversight are becoming central to ensuring
responsible and trustworthy implementation [43].

2. Background and Foundations

Artificial intelligence has been steadily reshaping the field of medical imaging over the past
decade, moving from simple pattern-recognition tools to highly capable systems that can
analyse complex scans with a level of detail once thought impossible. Early Al models relied
heavily on handcrafted features and required large amounts of labeled data, which limited their
performance and generalisability [33]. The rise of deep learning especially convolutional
neural networks marked a major turning point, enabling models to learn directly from raw
medical images instead of manually designed features [15], [16]. This shift dramatically
improved accuracy in tasks such as tumor detection, organ segmentation, and disease
classification across imaging modalities including X-ray, CT, MRI, ultrasound, and
histopathology [15], [33].

As datasets grew and computational power increased, researchers began exploring more
flexible architectures that could transfer knowledge from one task to another. This was a pivotal
step. Instead of training a new model from scratch for every clinical application, pretrained
networks became the foundation of many imaging workflows [33]. The success of large-scale
models in general computer vision inspired the medical community to design similar systems
tailored specifically for healthcare [31]. This momentum paved the way for foundation
models—Ilarge, pretrained networks capable of learning universal medical image features that
can be adapted quickly and with minimal data [7], [31], [14].

At the same time, multimodal learning emerged as a powerful companion to imaging-based Al
Clinicians rarely interpret an image in isolation; they rely on patient histories, radiology reports,
lab results, and clinical impressions. By training models on paired image—text data, Al systems
began to understand not only the visual patterns in a scan but also how clinicians describe,
interpret, and reason about those visuals [11], [45]. This enabled new possibilities such as
automated report generation, text-guided image segmentation, and medical visual question
answering, bringing Al a step closer to supporting real clinical decision-making [46], [45].

Yet, as these technologies matured, it became clear that accuracy alone was not enough. For Al
to be genuinely useful and safe in healthcare, it must be fair, transparent, and accountable.
Concerns about biased datasets, uneven performance across demographic groups, and opaque
decision-making highlighted the need for deeper research in fairness and expblainability [17],
[19], [27]. Clinicians must be able to trust the systems they work with understanding how
predictions are generated and ensuring those predictions benefit all patients equally [4], [22],
[42]. This realization has shaped the modern direction of medical imaging Al, where cutting-
edge technical innovation is paired with a strong commitment to ethical, equitable, and
clinically responsible deployment [5], [22].
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Table 1:Key Differences Between Traditional Imaging Methods and AI-Powered Imaging

Aspect

Traditional Imaging
Methods

Al-Powered Imaging

Image Interpretation

Relies mainly on
radiologists’ experience and
manual inspection.

Al models analyze images
automatically and highlight
patterns humans may miss.

Interpretation can be time-

Offers rapid analysis,

differ between experts.

Speed consuming, especially with | reducing reporting time and
high patient load. supporting faster diagnosis.
. Provides consistent
Accuracy varies based on
. : performance and can detect
Accuracy expertise, fatigue, and " .
. subtle abnormalities with
complexity of cases. . .
high precision.
. . Al delivers standardized
. Human interpretations may
Consistency results across cases and

locations.

Detection of Early Signs

Early-stage issues can
sometimes be overlooked
due to human limitations.

Al can identify tiny,
complex, or rare patterns
using large-scale training
data.

Requires significant effort
for manual segmentation,

Automates repetitive tasks
like segmentation,

technologies or diseases.

Workload
measurements, and measurement, and
comparisons. prioritization.
Needs specialist training to | Al can quickly adapt
Adaptability handle new imaging through retraining or fine-

tuning on new datasets.

3. Architectural Overview

3.1 Vision-Based Architectures for Medical Imaging

Modern Al systems for medical imaging are built on powerful vision architectures that learn
directly from pixel data. Convolutional Neural Networks (CNNs) marked the first major
breakthrough, delivering strong performance in classification, localization, and segmentation
tasks [15], [33]. More recently, Vision Transformers (ViTs) have gained prominence for their
ability to capture long-range dependencies and learn richer global representations,
outperforming traditional CNNs in many scenarios [38]. These architectures now form the core
of applications such as lesion detection, organ segmentation, and disease grading, making them
the backbone of most imaging-based Al pipelines [15], [33], [38].

3.2 Multimodal Vision—-Language Architectures

Since medical imaging is seldom interpreted without textual context, multimodal architectures
have emerged to bridge the gap between images and clinical language. These systems combine
visual encoders with text encoders to process radiology reports, clinical notes, and medical
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terminology alongside image data [11], [45]. By aligning visual and textual representations,
such models can perform tasks such as automated report generation, text-guided segmentation,
and image—text retrieval [46], [45]. Their design mirrors how radiologists work in real clinical
settings—interpreting visual findings in the context of patient-specific information and
narrative descriptions [11], [45].

3.3 Foundation Model Architectures and Pretraining Pipelines

Foundation models represent the next stage in architectural evolution. Instead of being built for
a single task, they are designed as large, general-purpose models pretrained on extensive
medical datasets [3], [9], [10]. Their architecture typically includes scalable transformer
backbones, hybrid CNN-transformer layers, or encoder—decoder structures capable of
powering multiple downstream tasks [31], [35], [45]. The strength of these models lies in their
broad pretraining pipelines, where they learn universal medical imaging features, enabling
zero-shot, few-shot, or transfer learning with minimal additional data [3], [9], [16], [31]. This
architecture makes them versatile tools for segmentation, classification, detection, and
multimodal reasoning [16], [45], [51].

3.4 Architectures for Fairness, Explainability, and Trustworthiness

As Al becomes more integrated into clinical workflows, architecture-level mechanisms for
fairness and transparency have become essential. Newer models incorporate fairness-aware
layers, demographic-agnostic training objectives, or adversarial components designed to
prevent the model from unintentionally encoding sensitive attributes [5], [17], [18], [19], [24],
[27], [38], [48]. For explainability, architectures increasingly include built-in interpretability
modules such as attention maps, concept-based reasoning units, and uncertainty-estimation
blocks that help clinicians understand how and why predictions are made [4], [22], [42]. These
architectural additions shift Al systems from “black boxes” to more trustworthy partners in
clinical decision-making [36].

Al in Medical Imaging:
Models, Fairness & Explainablity

Segment Anything MedCLIP
Model (SAM) Medically-aligned vision-

General-purpose segmenttation language model via

backbone for diverse imaging contrastive pretraining

tasks
BioMedGPT Bias in Imaging Explainable
Generalist biomedical Al Al (XAl)
vision-language Assessing and Methods for interpe-
foundation model addressing bias across table and trustworthy
populations and skin tone diagnostic systems

Fig 1: Core Pillars of AI in Medical Imaging
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4. Bias in Imaging AI (Skin Tone & Population Bias)

Bias in medical imaging Al is a growing concern because the systems often learn from datasets
that do not fully represent the diversity of real-world patients [5], [13], [17], [18]. When models
are trained mostly on images from specific skin tones, age groups, or hospital populations, their
performance becomes uneven. For example, dermatology Als trained on lighter skin may
struggle to detect conditions on darker skin, and radiology models developed from data in one
region may misinterpret scans from another due to cultural, genetic, or device-related
differences [19], [27], [48]. These mismatches can lead to incorrect or delayed diagnoses for
underrepresented groups. Between 2019 and 2025, research has increasingly shown the need
for fairness-aware Al models that are tested across demographic subgroups and validated on
diverse datasets [24], [38], [53]. Ensuring fairness is not only about improving accuracyj; it is
about protecting trust, reducing healthcare inequality, and ensuring that Al benefits all patients,
not just the majority groups represented in training data [5], [18], [38].

4.1 Unequal Data Representation:
Most medical imaging datasets contain more samples from certain skin tones or populations,
causing models to learn biased patterns [5], [13], [17], [18], [19].

4.2 Performance Gaps Across Demographics:
Al tools may show excellent accuracy for majority groups but significantly lower accuracy
for underrepresented ones [5], [13], [18], [24], [27], [48].

4.3 Skin Tone Bias in Dermatology:
Many dermatology Al systems struggle to detect diseases on darker skin because of limited
training examples [6], [11], [16], [25], [32], [43].

4.4 Population Bias in Radiology:
Models trained on data from one hospital, country, or imaging device may fail to generalize
to patients from other regions [14], [23], [29], [37], [49].

4.5 Device & Protocol Differences:
Imaging machines, scanning settings, and clinical workflows vary globally, contributing to
hidden model biases [14], [23], [29], [37], [49].

4.6 Need for Fairness Metrics:

Researchers are now evaluating models separately for different subgroups (e.g., light vs. dark
skin, young vs. elderly) rather than relying on a single accuracy score [5], [18], [24], [27],
[38], [48].

4.7 Solutions: Diversified Data & Bias Mitigation:

Approaches like balanced datasets, synthetic images, domain adaptation, and bias-
regularization techniques are being used to create fairer Al systems [5], [17], [22], [24], [27],
[38], [48].
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Fig 2: Workflow for Detecting Skin Tone and Population Bias in Medical Imaging Al

5. Privacy in AI-Based Healthcare Imaging

The rapid rise of artificial intelligence in medical imaging has transformed how diseases are
detected, monitored, and understood [33]. But as hospitals and developers increasingly rely on
Al systems trained on large volumes of patient scans, privacy has become one of the most
sensitive and debated issues in this space [14], [55]. Protecting a patient’s identity is not just a
legal requirement it is essential for trust, ethical practice, and the safe adoption of Al in
healthcare [2], [37], [47], [5], [36], [32].

5.1 Why Privacy Matters in Medical Imaging

Medical images such as MRI, CT, X-rays, and retinal scans often contain far more
information than what is needed for diagnosis [33], [45]. Beyond the disease itself, they
may indirectly reveal identity clues, demographic details, or other sensitive health data [19],
[48]. Even when names and IDs are removed, Al models can sometimes re-identify

individuals using hidden features in images a serious concern for patient confidentiality
[14], [55].

5.2 Key Privacy Risks in AI Healthcare Imaging
5.2.1. Re-identification of anonymised images
With powerful generative models, anonymised scans can sometimes be matched back

to individuals using facial structures, unique anatomical features, or cross-referencing
with other databases [14], [55], [19].
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5.2.2. Data leakage from Al models
Poorly secured models can unintentionally “memorise” patient data. Attackers may
extract sensitive information through.
* model inversion attacks [55].
* membership inference [19].
* reconstruction attacks [14], [55].

5.2.3. Unregulated data sharing

Al development often requires partnerships between hospitals, research labs, and companies
[47], [2]. Without strict governance, patient scans may be shared more broadly than intended
[37], [32].

5.2. 4. Cloud storage vulnerabilities
Medical datasets stored on cloud servers can be misconfigured or hacked if proper encryption
and access controls are not implemented [28], [41], [55].

5.3 How Privacy Can Be Protected

Researchers and developers are now focusing on stronger safeguards to protect patient data
while still enabling Al innovation:

e De-identification and defacing: removing any facial or identity-linked information
from imaging data [14], [30], [34].

e Federated learning: models learn from hospital data without the data ever leaving the
institution, reducing exposure [7].

o Differential privacy: adds mathematical noise to protect individual identity while
preserving overall trends [26], [33].

e Encrypted model training: ensures that even if data is intercepted, it cannot be read
or reconstructed [28].

e Strict data-use policies and audit trails: hospitals maintain full control over who
accesses datasets and for what purpose [40], [55].

5.4 Balancing Innovation with Ethics

Al can save lives by detecting diseases earlier than ever before but patient trust is the foundation
of any successful healthcare system. If patients fear that their scans may be misused or leaked,
they may hesitate to undergo essential tests [30], [34], [40], [55].

Therefore, privacy is not something to “add later” it must be a core design principle of Al
healthcare imaging systems [30], [34], [40], [55].
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Table 2: Overview of Ethical and Legal Concerns in AI-Driven Healthcare Systems

Category

Key Challenges

Explanation

Ethical Challenges

Algorithmic Bias & Fairness

Al may work better for some
groups (e.g., certain skin tones,
ages, or regions) because the
training data is unbalanced,
causing unfair or inaccurate
diagnoses [5], [13], [18], [31].

Lack of Transparency (Black-
Box Models)

Many Al systems do not explain
how they reach decisions,
making it hard for doctors to
trust the results or for patients to
understand their diagnosis [4],
[21], [35], [34].

Patient Autonomy & Informed
Consent

Patients may not know how
their medical data is collected,
stored, or used by Al, raising
concerns about consent and
respect for patient choice [37],
[32], [2], [41].

Accountability &
Responsibility

When Al gives a wrong result,
it is unclear who is responsible
the doctor, the hospital, or the
Al developer making ethical
accountability difficult [37],
[47], [2], [58].

Legal Challenges

Data Privacy & Protection
Laws

Regulations  like = GDPR,
HIPAA, and India’s DPDP Act
demand strict handling of
medical data. Al systems must
follow rules on storing, sharing,
and protecting patient
information [37], [2], [41], [32].

Regulatory Approval for Al as a
Medical Device

Al used for diagnosis must
undergo formal certification
(FDA, CDSCO, EMA).
Ensuring safety and clinical
validation is legally required
and often complex [2], [47],
[29], [37].

Liability in Case of Harm or
Misdiagnosis

There are no clear legal rules
about who is liable if Al makes
a harmful mistake the doctor,
hospital, or company creating
legal uncertainty [37], [47], [2],
[58].
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6. Future Scope

As Al becomes more deeply integrated into clinical practice, the ethical and legal landscape
will continue to evolve. Future research and policy development will focus on building systems
that are not only technologically advanced but also trustworthy, transparent, and aligned with
patient rights [2], [26], [32], [36], [37], [47], [54]. The scope for future advancements includes
several important directions.

6.1 Development of Global Ethical Standards

There is a growing need for internationally harmonized guidelines for Al in healthcare. Future
work will focus on unified ethical frameworks, global standards for fairness and safety, and
international audit systems [2], [12], [26], [36], [37], [44], [47]. This will help ensure consistent
patient protection across borders.

6.2 Stronger Privacy-Preserving Al Technologies

Medical imaging data stored on cloud servers can be vulnerable if security settings are
misconfigured or if strong encryption and access controls aren’t put in place [28], [41], [55].
In addition, some Al models can unintentionally “memorise” pieces of patient data during
training [55], [19], which means attackers could potentially pull out sensitive details through
techniques like model inversion, membership inference, or reconstruction attacks [55], [19],
[14]. Because Al development often involves collaboration between hospitals, research groups,
and private companies [47], [2], patient scans may also end up being shared more widely than
anyone intended if clear governance isn’t enforced [37], [32]. And with the growing power of
generative models, even anonymised scans aren’t always completely safe facial structures,
unique anatomical features, or matches with other databases can sometimes be used to link an
image back to a specific person [14], [55], [19].

6.3 Legal Frameworks Tailored Specifically for AI

Most current healthcare laws were created long before Al became part of medical practice,
which means they often fall short when dealing with modern imaging systems and machine-
learning models [37], [47]. As Al becomes more deeply embedded in diagnosis and clinical
decision-making, future legal reforms are expected to introduce Al-specific liability structures,
clearer rules about who is accountable when systems fail, and guidance for dealing with “black
box” models whose internal reasoning is hard to interpret [2], [32]. These reforms will also
likely include legal definitions for shared responsibility between humans and Al systems,
making it easier for courts, clinicians, and technology developers to navigate complex cases
and ensure patient protection remains at the centre of innovation [37], [47].

6.4 Ethical AI Certification and Auditing

We will likely see the emergence of Al ethics certifications, independent auditing authorities,
and dedicated bias-and-safety testing labs as healthcare systems adapt to the growing role of
machine learning [47], [32]. These organizations would help ensure that any Al tool entering a
hospital has undergone rigorous ethical review, fairness evaluation, and compliance checks
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before it reaches clinicians or patients [2], [36]. By creating reliable oversight structures, the
healthcare sector can better guarantee that new Al systems meet both ethical standards and
legal requirements before deployment.

6.5 Integration of Explainable Al (XAI) into Regulations

Future healthcare systems will require AI models that are interpretable by design, ensuring
clinicians can understand how conclusions are reached [32], [36]. As regulation continues to
evolve, explainability is expected to become a legal requirement rather than an optional feature,
especially for high-stakes medical decisions where transparency is essential for patient safety
and accountability [2], [37].

6.6 Patient-Centric AI Governance

Future policies are expected to place greater emphasis on protecting patient autonomy by
reinforcing rights to clear explanations, redesigning consent processes to include Al-related
risks, and giving patients the option to opt out of Al-driven decision-making when they choose
[37], [47], [32]. These shifts aim to strengthen trust in medical Al systems and ensure that
patients remain fully informed and empowered as technology becomes more deeply integrated
into healthcare [2].

6.7 Ethical Use of Foundation Models in Healthcare

As large multimodal models such as SAM, MedCLIP, and BioMedGPT continue to advance,
future research will increasingly focus on safe fine-tuning, reducing bias, curating datasets
ethically, and preventing misuse of these powerful systems [11], [9], [10], [17]. Because these
models operate at a scale that can significantly influence clinical practice, new forms of

oversight will be needed to ensure they are deployed responsibly and aligned with healthcare
standards [32], [47].

6.8 AI Ethics in Low-Resource and Global South Settings

A major future priority will be developing ethical and legal frameworks that are tailored to the
needs of rural healthcare systems, low-resource hospitals, and developing countries [31], [5].
To ensure that medical Al benefits all populations not only those in well-funded healthcare
environments these norms must be inclusive, flexible, and globally adaptable [36], [32].

6.9 Continuous Monitoring of Al in Real-World Use

Future regulations will increasingly require continuous performance evaluation, active bias
monitoring, routine safety reporting, and regular post-deployment audits to ensure Al systems
remain reliable over time [32], [47]. These ongoing checks are essential because medical needs,
patient populations, and clinical environments evolve, and Al models must adapt safely to those
changes to maintain trust and effectiveness in real-world care [36], [2].

Conclusion

Artificial intelligence is transforming healthcare imaging at an unprecedented pace, bringing
new possibilities for early diagnosis, clinical efficiency, and personalized patient care.
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Foundation models, multimodal systems, and explainable Al are pushing the boundaries of
what technology can achieve, enabling machines to interpret complex scans with remarkable
accuracy. Yet, as powerful as these advancements are, their success depends on more than
technical performance alone.

For Al to truly strengthen the healthcare ecosystem, it must be fair, transparent, and trustworthy:.
Challenges such as demographic bias, lack of explainability, and risks to patient privacy
highlight the need for responsible development and deployment. The ethical and legal concerns
explored in this work show that innovation must go hand in hand with accountability. Patient
data is deeply personal, and any system that uses it must prioritize safety, consent, and respect
for individual rights.

As healthcare systems continue adopting Al, the focus must shift toward building robust
governance frameworks, enhancing privacy-preserving training methods, and ensuring
continuous monitoring of Al models in real-world environments. Collaboration between
clinicians, engineers, policymakers, and ethicists will be essential to shape Al tools that not
only improve diagnosis but also uphold the values at the heart of medicine—equity,
compassion, and trust.

In the end, the true potential of Al in healthcare imaging lies not just in its ability to detect
disease, but in its capacity to support clinicians, empower patients, and contribute to a more
inclusive and reliable healthcare future. By balancing innovation with ethical responsibility, Al
can evolve into a safe and transformative partner for global health.
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